=============================== QGML Testing and Validation Guide =============================== This section provides comprehensive documentation for testing and validating QGML framework components. Overview ======== The QGML testing framework ensures: * **Mathematical Correctness**: Quantum state computations and geometric properties * **Numerical Stability**: Robust behavior across different parameter ranges * **Performance Validation**: Efficient computation and memory usage * **Integration Reliability**: Seamless component interactions Test Categories =============== Integration Tests ----------------- End-to-end validation of complete workflows: .. toctree:: :maxdepth: 2 integration_tests dimensional_consistency backend_validation Unit Tests ---------- Individual component validation: .. toctree:: :maxdepth: 2 core_components learning_components analysis_components Validation Tests ---------------- Mathematical and numerical correctness: .. toctree:: :maxdepth: 2 quantum_state_validation geometric_properties numerical_stability Running Tests ============= Basic Test Execution -------------------- .. code-block:: bash # Run all tests pytest # Run specific test category pytest tests/test_integration/ # Run with verbose output pytest -v # Run with coverage report pytest --cov=qgml --cov-report=html Test Configuration ------------------ .. code-block:: python # pytest.ini configuration [tool:pytest] testpaths = tests python_files = test_*.py python_classes = Test* python_functions = test_* addopts = -v --tb=short Continuous Integration ====================== GitHub Actions -------------- Automated testing on every commit: .. code-block:: yaml name: QGML Tests on: [push, pull_request] jobs: test: runs-on: ubuntu-latest strategy: matrix: python-version: [3.8, 3.9, 3.10, 3.11] steps: - uses: actions/checkout@v2 - name: Set up Python uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} - name: Install dependencies run: | pip install -e . pip install pytest pytest-cov - name: Run tests run: pytest --cov=qgml Performance Benchmarking ======================== Benchmark Suite --------------- Comprehensive performance testing: .. code-block:: python # benchmarks/performance_tests.py import time import torch from qgml.learning.supervised_trainer import SupervisedMatrixTrainer def benchmark_training_time(): """Benchmark training performance.""" trainer = SupervisedMatrixTrainer(N=8, D=3) X = torch.randn(1000, 3) y = torch.randn(1000) start_time = time.time() trainer.fit(X, y, n_epochs=100) end_time = time.time() return end_time - start_time Memory Profiling ---------------- Memory usage analysis: .. code-block:: python # tests/test_memory.py import memory_profiler from qgml.geometry.quantum_geometry_trainer import QuantumGeometryTrainer @memory_profiler.profile def test_memory_usage(): """Profile memory usage during training.""" trainer = QuantumGeometryTrainer(N=16, D=4) # Training code here Troubleshooting =============== Common Issues ------------- **Import Errors** Ensure QGML is properly installed and Python path is correct. **Backend Issues** Check PyTorch/JAX installation and backend configuration. **Memory Issues** Reduce batch size or Hilbert space dimension for large models. **Numerical Instability** Adjust learning rates and regularization parameters. Debug Mode ---------- .. code-block:: python # Enable debug logging import logging logging.basicConfig(level=logging.DEBUG) # Run tests with debug output pytest -s --log-cli-level=DEBUG Test Data ========= Synthetic Data -------------- Standard test datasets for validation: .. code-block:: python from qgml.utils.data_generation import ( generate_spiral_data, generate_sphere_data, generate_hypercube_data ) # Generate test datasets X_spiral = generate_spiral_data(n_points=200, noise=0.1) X_sphere = generate_sphere_data(n_points=150, radius=1.0) X_hypercube = generate_hypercube_data(n_points=100, dim=3) Real Data Integration --------------------- Integration with real-world datasets: * **Genomics Data**: Chromosomal instability analysis * **Performance Benchmarks**: Backend comparison data * **Validation Datasets**: Standard ML benchmarks Best Practices ============== Test Design ----------- 1. **Isolation**: Tests should not depend on each other 2. **Determinism**: Use fixed random seeds for reproducible results 3. **Coverage**: Aim for >90% code coverage 4. **Performance**: Keep test execution time reasonable Test Documentation ------------------ 1. **Clear Purpose**: Document what each test validates 2. **Expected Behavior**: Specify expected outcomes 3. **Edge Cases**: Test boundary conditions and error cases 4. **Performance Expectations**: Include timing and memory benchmarks Contributing ============ Adding New Tests ---------------- 1. Follow naming convention: `test__.py` 2. Include comprehensive docstrings 3. Add to continuous integration pipeline 4. Update documentation Test Review Process ------------------- 1. **Code Review**: All test code must be reviewed 2. **Coverage Analysis**: Ensure adequate test coverage 3. **Performance Impact**: Verify tests don't slow down CI 4. **Documentation Updates**: Update test documentation See Also ======== * :doc:`../api/core` - Core API documentation * :doc:`../user_guide/installation` - Installation guide * :doc:`../examples/quickstart` - Quickstart tutorial