===================================================== Quantum Geometric Machine Learning (QGML) Documentation ===================================================== Welcome to the comprehensive documentation for **Quantum Geometric Machine Learning (QGML)**, an advanced framework that combines quantum geometric principles with machine learning for intrinsic dimension estimation, manifold learning, and data analysis. Quick Links =========== * :doc:`visualization_gallery` - View generated visualizations and analysis results * :doc:`user_guide/quickstart` - Get started with QGML * :doc:`user_guide/installation` - Installation guide Overview ========= QGML leverages quantum geometric principles to encode classical data in quantum states, enabling: * **Intrinsic dimension estimation** using quantum geometric techniques * **Manifold learning** with quantum coherent states * **Topological data analysis** via Berry curvature and Chern numbers * **Advanced quantum information measures** for data characterization * **Quantum-classical hybrid learning** algorithms Key Features ============ **Core Framework** * Base quantum matrix operations with Hermitian constraints * Error Hamiltonian construction and ground state computation * Quantum state expectation value calculations * Unified architecture for supervised and unsupervised learning **Advanced Topological Analysis** * Berry curvature field computation over parameter space * Chern number calculation for topological invariants * Quantum phase transition detection * Quantum metric tensor analysis **Quantum Information Measures** * Von Neumann entropy for entanglement quantification * Quantum Fisher information matrix for parameter estimation * Quantum coherence and capacity measures * Cross-correlation analysis between geometric properties **Specialized Applications** * Chromosomal instability analysis for cancer research * Financial time series forecasting * High-dimensional manifold learning * Quantum-enhanced feature extraction Quick Start =========== Installation ------------ .. code-block:: bash git clone cd qgml pip install -e . Basic Usage ----------- .. code-block:: python import torch from qgml.geometry.quantum_geometry_trainer import QuantumGeometryTrainer # Create trainer with advanced quantum geometric features trainer = QuantumGeometryTrainer( N=8, # Hilbert space dimension D=2, # Feature space dimension fluctuation_weight=1.0, topology_weight=0.1 ) # Generate sample data points = torch.randn(100, 2) # Perform complete quantum geometric analysis analysis = trainer.analyze_complete_quantum_geometry( points, compute_topology=True, compute_information=True, output_dir="analysis_results" ) # Access results print(f"Berry curvature: {analysis['topology']['sample_berry_curvature']}") print(f"Von Neumann entropy: {analysis['quantum_information']['von_neumann_entropy']}") Architecture Overview ==================== .. graphviz:: digraph qgml_architecture { rankdir=TB; node [shape=box, style=rounded]; base [label="BaseQuantumMatrixTrainer\n(Core quantum operations)"]; unsup [label="UnsupervisedMatrixTrainer\n(Manifold learning)"]; sup [label="SupervisedMatrixTrainer\n(Regression/Classification)"]; geom [label="QuantumGeometryTrainer\n(Advanced geometric features)"]; chromo [label="ChromosomalInstabilityTrainer\n(Specialized genomic analysis)"]; topo [label="TopologicalAnalyzer\n(Berry curvature, Chern numbers)"]; info [label="QuantumInformationAnalyzer\n(Entropy, Fisher information)"]; base -> unsup; base -> sup; base -> geom; sup -> chromo; geom -> topo; geom -> info; {rank=same; unsup, sup} {rank=same; topo, info} } Contents ======== .. toctree:: :maxdepth: 2 :caption: User Guide user_guide/installation user_guide/quickstart user_guide/tutorials user_guide/examples .. toctree:: :maxdepth: 2 :caption: Visualizations visualization_gallery .. toctree:: :maxdepth: 2 :caption: API Reference api/core api/quantum_geometry api/topological_analysis api/quantum_information api/specialized_trainers .. toctree:: :maxdepth: 2 :caption: Mathematical Background math/quantum_matrix_geometry math/topological_invariants math/quantum_information_theory math/applications .. toctree:: :maxdepth: 2 :caption: Advanced Features advanced/berry_curvature advanced/chern_numbers advanced/phase_transitions advanced/entanglement_analysis advanced/quantum_fisher_information .. toctree:: :maxdepth: 2 :caption: Applications applications/manifold_learning applications/genomics applications/finance applications/dimension_estimation .. toctree:: :maxdepth: 2 :caption: Experimental Results experimental_results/index .. toctree:: :maxdepth: 2 :caption: Developer Guide developer/contributing developer/architecture developer/testing developer/performance Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`