Quantum Geometric Machine Learning (QGML) Documentation
Welcome to the comprehensive documentation for Quantum Geometric Machine Learning (QGML), an advanced framework that combines quantum geometric principles with machine learning for intrinsic dimension estimation, manifold learning, and data analysis.
Quick Links
QGML Visualization Gallery - View generated visualizations and analysis results
QGML Quickstart Guide - Get started with QGML
QGML Installation Guide - Installation guide
Overview
QGML leverages quantum geometric principles to encode classical data in quantum states, enabling:
Intrinsic dimension estimation using quantum geometric techniques
Manifold learning with quantum coherent states
Topological data analysis via Berry curvature and Chern numbers
Advanced quantum information measures for data characterization
Quantum-classical hybrid learning algorithms
Key Features
- Core Framework
Base quantum matrix operations with Hermitian constraints
Error Hamiltonian construction and ground state computation
Quantum state expectation value calculations
Unified architecture for supervised and unsupervised learning
- Advanced Topological Analysis
Berry curvature field computation over parameter space
Chern number calculation for topological invariants
Quantum phase transition detection
Quantum metric tensor analysis
- Quantum Information Measures
Von Neumann entropy for entanglement quantification
Quantum Fisher information matrix for parameter estimation
Quantum coherence and capacity measures
Cross-correlation analysis between geometric properties
- Specialized Applications
Chromosomal instability analysis for cancer research
Financial time series forecasting
High-dimensional manifold learning
Quantum-enhanced feature extraction
Quick Start
Installation
git clone <repository-url>
cd qgml
pip install -e .
Basic Usage
import torch
from qgml.geometry.quantum_geometry_trainer import QuantumGeometryTrainer
# Create trainer with advanced quantum geometric features
trainer = QuantumGeometryTrainer(
N=8, # Hilbert space dimension
D=2, # Feature space dimension
fluctuation_weight=1.0,
topology_weight=0.1
)
# Generate sample data
points = torch.randn(100, 2)
# Perform complete quantum geometric analysis
analysis = trainer.analyze_complete_quantum_geometry(
points,
compute_topology=True,
compute_information=True,
output_dir="analysis_results"
)
# Access results
print(f"Berry curvature: {analysis['topology']['sample_berry_curvature']}")
print(f"Von Neumann entropy: {analysis['quantum_information']['von_neumann_entropy']}")
Architecture Overview
![digraph qgml_architecture {
rankdir=TB;
node [shape=box, style=rounded];
base [label="BaseQuantumMatrixTrainer\n(Core quantum operations)"];
unsup [label="UnsupervisedMatrixTrainer\n(Manifold learning)"];
sup [label="SupervisedMatrixTrainer\n(Regression/Classification)"];
geom [label="QuantumGeometryTrainer\n(Advanced geometric features)"];
chromo [label="ChromosomalInstabilityTrainer\n(Specialized genomic analysis)"];
topo [label="TopologicalAnalyzer\n(Berry curvature, Chern numbers)"];
info [label="QuantumInformationAnalyzer\n(Entropy, Fisher information)"];
base -> unsup;
base -> sup;
base -> geom;
sup -> chromo;
geom -> topo;
geom -> info;
{rank=same; unsup, sup}
{rank=same; topo, info}
}](_images/graphviz-18005d76d4e984e1b0612bab888b8af432005a60.png)
Contents
User Guide
Visualizations
API Reference
Experimental Results