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Abstract



The vibrational mode properties of crystalline, alloyed, and amorphous materials

are predicted using methods based in molecular dynamics simulations and lattice

dynamics calculations. The mode properties allow for an understanding of the nature

of thermal transport at the atomic scale not accessible from system-level thermal

conductivity prediction.

Thermal transport in crystalline materials is well-understood in terms of the

phonon gas model. Disordering a crystal (i.e., by alloying or amorphization) breaks

down the applicability of the phonon gas model and additional theoretical formula-

tion is necessary. Typical formulations (e.g., the virtual crystal approximation) be-

gin with perturbation theory, which is only valid for weakly-disordered systems, and

lead to simple models whose predictive capabilities are unknown. Predictive meth-

ods that explicitly include the disorder (e.g., normal mode decomposition and Allen-

Feldman theory) are still under development. Because disordering complicates the

theory of thermal transport, each method provides complementary information that

must often be integrated together.

To assess the predictive capabilities of theoretical models for thermal transport in

disordered materials, Lennard-Jones argon, crystalline and amorphous silicon, car-

bon nanotubes, and amorphous silica are studied. The theoretical and computational

framework for performing the predictive analyses is first presented and discussed.

Important assumptions about the nature of thermal transport in disordered materials

are then investigated using perturbative approaches and fully atomistic models where

the disorder is included explicitly. The relative contributions of propagating (i.e.,

phonon-like) and non-propagating vibrational modes are quantified. The predicted

mode properties are compared to experimental measurements and phenomenolog-

ical/empirical models, leading to an understanding of the variation in the system-

level thermal conductivity for all the materials. The results provide a theoretical and

computational framework for the study of emerging disordered and nanostructured
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Chapter 1

Introduction

1.1 Motivation

Due to their potentially low thermal conductivities, disordered materials (e.g., alloys, amorphous

solids, aerogels) are used in applications such a photoelectric energy conversion, thermoelectric

energy conversion, and thermally insulating barriers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The focus

of this work is on dielectric or semiconducting solids, where the heat is conducted by the atomic

vibrational modes. Thermal management engineering (i.e., heat spreaders and thermal insula-

tors) depends critically on accurate predictions of the vibrational mode properties. The mode

properties allow for a deeper understanding of the nature of thermal transport at the atomistic

scale, which can be used to understand the effects of vibrational scattering mechanisms in bulk

and nanostructured materials, which is an area of active research [4, 6, 7, 8, 9, 12, 13, 14, 15].

Thermal transport in ordered (crystalline) materials is well understood in terms of the phonon

gas model [16, 17, 18, 19, 20]. Predicting the thermal conductivity requires the properties of

the full spectrum of vibrational modes. Theoretical formulations for phonon properties date

back to the work of Callaway [21], Holland [22], Klemens [23], and Slack [24]. Their theory

derived and/or postulated analytical models for the phonon dispersion and lifetimes (typically

based on low-frequency limits) to be used in a solution of the BTE for predicting thermal con-

1



ductivity. By fitting the BTE solution to experimental bulk thermal conductivity data, expres-

sions for the lifetimes are obtained. While good fits to the experimental data can be found, this

agreement may be due to the numerous fitting parameters and not due to the correctness of the

phonon lifetime models [25]. Atomistic techniques, which can predict the properties of individ-

ual phonon modes without any assumptions about the dispersion or scattering, are thus required.

Newly-developed computational methods based on density functional theory (DFT) calcualtions

can make experimentally-accurate predcitions of the phonon properties and thermal conductiv-

ity of bulk crystals, whose structures are based on a unit cell with a small number of atoms

[26, 27, 28, 29, 30, 31, 32, 33].

Disordering a crystal (i.e., alloying, amorphization) breaks down the phonon gas theory and a

new theoretical formulation is necessary. Theoretical formulations for disordered crystals begin

with perturbation theory [16, 17, 23, 34, 35], which is only valid for weakly disordered systems

(i.e., isotopically disordered crystals) and bases the calculations on a unit cell with a small num-

ber of atoms. The study of disordered lattices (i.e., alloys) has become increasingly quantitative

as researchers seek lower thermal conductivity thermoelectric materials [4, 6, 8, 9, 36, 37, 38].

Modeling can be experimentally accurate using DFT calcualtions together with perturbative

methods [26, 27, 28, 30, 33, 38, 39]. Because DFT calculations are computationally expensive,

they rely on the perturbative methods. The comparison of the perturbative DFT predictions to

experiments is only qualititative for some disordered materials, particularly for those with lower

thermal conductivities [36, 37, 40, 41]. Thus, there is a need to asses the applicability of the

perturbative methods used in DFT calculations for disordered crystals with a range of disorder

[32, 32, 36, 37, 40, 41].

Amorphous materials have been well-studied in the literature for their interesting properties

such as the Boson peak [42, 43, 44], excess modes [45, 46], and, most relevant to the current

study, phonon-like thermal transport [1, 2, 15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,

59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. Theoretical modeling of amorphous materi-

als has previously relied on phenomenological models, which have limited predictive capability
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[1, 2, 24, 49, 69, 72]. The theoretical formulation for the mode properties in amorphous ma-

terials has only been recently developed. [47, 48, 73] Like a disordered crystal, an amorphous

material has a unit cell with an infinite number of atoms, by definition. However, modeling of

amorphous materials is difficult because the topological disorder prohibits the use of perturbative

methods. Instead, the disordered material must be modeled explicitly. A finite unit cell can be

used to model an amorphous material, but the required size of these models is typically large

[48, 52], which limits the use of DFT calculations. As with disordered crystals, modeling of

amorphous materials is becoming increasingly quantitative as new experimental techniques for

measuring thermal properties reach higher levels of resolution [15, 53, 54, 55, 58, 59, 60, 61, 74].

Thus, there is a need to asses the predictive capabilities of the theoretical models for predicting

vibrational mode properties in amorphous materials.

1.2 Vibrational Modes: Phonons, Propagons, Diffusons, and

Locons

For a perfect lattice, all vibrational modes are phonon modes, which by definition are delo-

calized, propagating plane waves [20]. For disordered materials, all vibrational modes are not

phonons because there is no translational order. Allen and Feldman define all disordered vibra-

tional modes to be vibrons because they are all bosons and follow Bose-Einstein statistics [73].

The vibrons are propagons, diffusons, or locons. Propagons are propagating and delocalized

(i.e., phonon-like) and are typically found in the low-frequency range of the vibrational spec-

trum [73]. Diffusons are non-propagating and delocalized modes that couple harmonically due

to the disorder and spatial delocalization [47]. While diffusons are non-propagating, they can

contribute a significant amount to thermal transport [48, 52]. Locons are non-propagating and

spatially localized modes that not contribute to thermal transport, and are typically found at the

high frequency of the vibrational spectrum [47, 73].
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Figure 1.1: Density of vibrational states for a model of amorphous silicon and classification of
vibrational modes (vibrons). Figure is reproduced from Ref. 73.

The spectrum of vibrons is depcited in Fig. 1.1 for a model of amorphous silicon [73]. The

propagons exist at low frequencies below the Ioffe-Regel (IR) limit [75], which is the proposed

transition between propagating and non-propagating modes. The IR limit is discussed in Sections

3.3.3 and 4.4.4. Propagons and diffusons are called extendons because they are delocalized. The

mobility edge marks the transition from the delocalized diffusons to the localized locons [73].
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1.3 System-level versus Mode-level Predictions

1.3.1 System-level Prediction

There are several atomistic methods for predicting the thermal conductivity at the system level.

The molecular dynamics (MD)-based direct method predicts the thermal conductivity by a direct

application of the Fourier law for heat conduction [12, 76, 77, 78, 79, 80]. While the direct

method is conceptually simple, it can be difficult to account for finite-size effects. The Green-

Kubo method can predict the thermal conductivity from equilibrium MD simulations. These

equilibrium simulations are often simpler to setup and account for finite-size effects (see Section

A.5). The Green-Kubo and direct methods can be applied to crystals, alloys, amorphous solids

[12, 29, 36, 62, 77, 77, 81, 82, 83, 84, 85], and is described in detail elsewhere [86, 87]. While the

GK and direct methods can take into account the effects of disorder, they predict no mode-level

properties of the thermal carriers.

While so-called “quantum corrections” to thermal conductivities predicted from classical

MD simulations have been proposed, Turney et al. demonstrate that these corrections are not

rigorous and should not be applied [88]. Comparison of MD-predicted thermal conductivities to

experimental measurements should therefore be limited to high temperatures, around and above a

material’s Debye temperature. The GK method, which is a system-level technique, is important

for the present study because it can be used to validate the mode-level techniques that are the

focus. The capabilities of the GK method are summarized in Table 1.1. It is important to note

that the theoretical formulation of the GK method prohibits its use with DFT calculations, where

the per atom potential energies cannot be rigorously defined.[89]

1.3.2 Mode-level Prediction

While the total thermal conductivity is typically the quantity of interest for modeling and engi-

neering analysis, the mode-level properties can be just as important. The mode-level properties
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allow for a deeper understanding of the total thermal conductivity. The mode-level properties

are used to understand the difference between predictions for alloys in Chapter 3 and amorphous

materials in Chapter 4.

The Callaway-Holland (CH) theory, which is based on the work of Callaway [21], Holland

[22], Klemens [23], and Slack [24], uses analytical models for phonon dispersion and lifetimes.

These analytical models are often empirically fit to experimental results, which limits the pre-

dictive capability of the CH theory. While the CH theory can calculate mode properties from the

analytical models, it is unclear how accurate these properties are.[25]

There are several methods that can predict the mode-level vibrational properties. Anharmonic

lattice dynamics (ALD) calculations [12, 29], based on perturbation theory [16, 18], can be used

along with phonon-defect scattering perturbation theory to predict the mode properties and ther-

mal conductivity of mass and/or bond disordered lattices (see Section 3.3.3.2) [23, 35, 90, 91].

However, ALD is a perturbative method that is valid at low temperatures where 3-phonon pro-

cesses dominate [12, 16, 17]. Quantum or classical statistics can be used with the ALD method.

Because the ALD method is based on a unit cell and disorder is included as a perturbation, the

mode properties predicted are for phonons. One of the objectives of this work is to investi-

gate if the phonon properties predicted by the ALD method are consistent with the properties of

propagons in a fully disordered system (see Chapter 3).

The inputs to the ALD method are the harmonic and anharmonic force constants from the

interatomic interactions, which can be obtained from empirical interatomic potentials or DFT

calculations [12, 92]. Because the ALD method is computationally inexpensive, it can be used

with computationally expensive DFT calculations to predict thermal conductivities that are ex-

perimentally accurate [26, 27, 28, 30, 30, 33, 38, 38, 39]. However, most studies using ALD and

DFT have been limited to disordered lattices (i.e., alloys) whose thermal conductivities are large

and dominated by low-frequency propagons [26, 27, 28, 30, 30, 33, 39]. Because no compre-

hensive study has been performed on a range of materials, it is unclear what limitations exist for

using the ALD and phonon-defect perturbative method [32, 32, 36, 37, 40, 41]. The limitations
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of the ALD and phonon-defect perturbative method is investigated in Chapter 3.

The key to explicitly incorporating the effects of disorder is to use large disordered supercells,

or a unit cell with a large number of atoms. The use of computationally inexpensive empirical

potentials allows for calculations to be performed on a large number of atoms, up to 105 −

106 [62, 83, 84, 85]. The Allen-Feldman (AF) theory computes the contribution of diffusons

to thermal conductivity from large disordered supercells [47]. The AF theory calculations are

based on harmonic lattice dynamics that rely on the system disorder to couple modes thermally

[47, 48, 52]. However, because the AF theory is harmonic, it is not suited to studying the low-

frequency propagons in disordered materials [48], particularly for disordered lattices where the

harmonic theory predicts Rayleigh scattering, which causes a divergent thermal conductivity with

increasing system size [93, 94, 95]. The AF theory can use quantum or classical expressions for

the specific heat. While the AF theory should be limited to low temperatures where the harmonic

approximation is valid, anharmonic effects have been shown to be small for disordered solids

such as amorphous silicon [48].

The normal mode decomposition (NMD) method can be used to predict the lifetime of all

vibrons from MD simulations [12, 62, 81, 83, 84, 85, 96, 97, 98, 99, 100, 101, 102, 103, 104,

105, 106]. While this method can only predict the mode lifetimes, these can be used with other

predictive methods and assumptions to predict the thermal conductivity (see Sections 3.3.4 and

4.4.5). Because the lifetimes predicted by NMD are obtained from MD simulations, they should

be used in a classical limit [88]. The thermal conductivity predicted by NMD begins to deviate

from GK and direct-method prediction near about half the melting temperature for Lennard-Jones

argon [12].

Because of the theoretical limitations of the methods discussed above, no one method is

sufficient for predicting the mode properties of all vibrons in a given disordered material. The

theoretical methods are summarized and compared in Table 1.1. The methods in Table 1.1 are

ranked in the order of their thermal conductivity predictive capability based on prior work in

the literature, starting with the least predictive on the left. For example, the CH theory relies
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Table 1.1: Comparison of theoretical techniques for predicting vibrational mode properties and
thermal conductivity for disordered systems.

CH Theory ALD AF Theory NMD GK
Description Empirical Predictive Predictive Predictive Predictive
Input Fitted Models Force con-

stants
(empirical
potential or
DFT)

Force con-
stants
(empirical
potential or
DFT)

Forces and
Force Con-
stants
(empirical
potential or
DFT)

Forces
(empirical po-
tential)

Disorder As additional
perturbation

As additional
perturbation

Naturally
included

Naturally
included

Naturally
included

Statistics Bose-Einstein
or
Boltzmann

Bose-Einstein
or
Boltzmann

Bose-Einstein
or
Boltzmann

Boltzmann Boltzmann

Temperature All Low All Mid-range All
Modes Phonons (Vi-

brons?)
Phonons (Vi-
brons?)

Diffusons Phonons and
Vibrons

N/A

completely on empirical fitting, while the GK method can predict the thermal conductivity of

some materials in any phase (crystalline, amorphous, liquid) [87]. In Chapter 5, the predictive

capabilities are re-ranked in Table 5.1 based on their ability to predict the mode properties in

disordered systems from the results in this work.
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1.3.3 Computational Cost vesus Predictive Ability

The computational costs of the methods discussed in Sections 1.3.1 and 1.3.2 are given in Table

1.2. In most cases, the computational cost of a method is known a priori and should be con-

sidered before any analysis is performed. The computational costs for these methods can be

represented by the total number of atoms, Na, that are being simulated. For ordered and disor-

dered systems, the total number of atoms can be related to the number of atoms in the unit cell,

n, and the number of unit cells, N (N = 1 for a disordered system), which gives Na = Nn (see

Section 2.3.1).

One of the goals of this work is to thoroughly asses the predictive abilities of these methods

in relation to their computational costs. For example, The NMD method can predict the mode

lifetimes for the vibrational modes in ordered and disordered systems (i.e., phonons and vibrons),

making its predictive ability high [12, 62, 81, 83, 84, 85, 99, 100, 101, 102, 103, 104, 105, 106].

However, the explicit use of disorder makes the NMD method’s computational cost high (see

Section 2.3.4), making it particularly challenging to use with DFT calculations [29, 36, 107, 108,

109, 110].

For the AF Theory and NMD method, the major computational cost is the eigenvalue solution

of the dynamical matrix (see Sections 3.3.1 and 4.3.2), which scales poorly in both CPU and

memory costs. For ALD, Na determines the resolution of the Brillouin zone sampling (see

Section 2.3.1 and Ref. 111). Some systems (such as the silicon alloys studied in Section 3.5)

require a fine sampling of the BZ, which increases the ALD computational costs. Using large

systems can be avoided by following the extrapolation procedure which is discussed in Appendix

A.5. Efficient MD codes like LAMMPS scale linearly with the number of atoms in the system

which makes the GK method (see Section 3.4) computationally-inexpensive.

The computational costs for each method are ranked in Table 1.2 starting with least expensive

on the left. The rankings do not take into account the coefficients of the computational scalings.

For example, to perform NMD on a system of 6912 atoms in less than 24 hours may take 100
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Table 1.2: Ranking of computational costs for theoretical techniques for predicting vibrational
mode properties and thermal conductivity, starting with the least expensive on the left.

CH Theory AF Theory NMD GK ALD
Computational
Cost
CPU
Memory

Minimal
Minimal

High
High

High
High

High
Low

High
Low

Maximum Na N/A 6912 6912 800000 8
Maximum
number of
Modes

N/A 20736 20736 N/A 592704

Computational
Scaling
CPU
Memory

Minimal
Minimal

(Nn)3

(Nn)2
(Nn)2

(Nn)2
(Nn)1

(Nn)1
N2n4

Nn2

central processing units (CPUs). The same number of CPUs are required to perform the GK

method on a system of 100000 atoms in the same amount of time. Coefficients of the compu-

tational scalings would take into account the difference in computational cost of classical pair

potentials versus multi-body potentials, for example. Thus, the ranking in Table 1.2 is to be used

as a rough guideline. The maximum system sizes are those achieved in this work.

The GK method, which scales most efficiently in both memory and CPU cost, has the most

potential to simulate systems with increasedNa, but does not predict the properties of any modes.

While the properties for a large number of modes can be predicted the ALD method, no explicit

atomic dynamics are simulated and the calculation is based on a small number of atoms. The

poor scaling of the computational cost with system size for the ALD method prohibits increasing

the system size significantly. The same is true for the AF and NMD methods. Suggestions are

given in Section 5.2.2 for increasing the system sizes for the AF and NMD methods, as well as

suggestion for other MD-based methods.
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1.4 Overview and Scope

The objective of this work is to develop a theoretical and computational framework for predicting

the vibrational mode properties in a range of disordered materials using atomistic techniques.

This objectives will be achieved through the use of four predictive methods: MD-based GK,

MD-based NMD, ALD, AF Theory (see Section 1.3). The analysis is performed on atomistic

models of a wide-range of ordered and disordered systems. Emphasis is placed on investigating

each material with as many of the four methods as possible to analyze the thermal properties

self-consistently. The outline is as follows:

In Chapter 2, two MD-based methods for predicting vibrational mode properties are com-

pared and evaluated. The vibrational mode properties and thermal conductivities are predicted

for models of three materials: argon, silicon, and a carbon nanotunbe. Theoretical derivations

are presented and the computational framework for performing the analysis is discussed. Rec-

ommendations are made based on the comparison of the two methods for future work using

MD-based methods (see Section 5.2.2.2).

In Chapter 3, the virtual crystal approximation for predicting the vibrational properties of

alloys is investigated. Two model systems, Lennard-Jones argon and Stillinger-Weber silicon, are

used to perform the analysis. The analysis is performed using molecular dynamics simulations

and lattice dynamics calculations. The vibrational mode properties in crystalline, alloyed, and

amorphous materials are studied using fully atomistic models. Mode frequencies and lifetimes

are first calculated by treating the disorder explicitly and under the virtual crystal approximation.

The two model systems have different vibrational mode spectra, which plays an important role in

determining the applicability of the virtual crystal approximation. The mode properties are then

used to predict thermal conductivity, and common phenomenological limits are used to interpret

the results. Important connections between disordered lattices and amorphous materials are made

through a comparison of their mode properties, which solidifies the modeling framework for

studying the propagating and non-propagating vibrational modes in disordered systems.
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In Chapter 4, the properties of the propagating and non-propagating vibrational modes in

amorphous silica and silicon are predicted using realistic atomistic models. The calculations

are performed using molecular dynamics simulations, lattice dynamics calculations. Using the

mode properties, the thermal conductivity accumulation functions are predicted and compared

with recent experimental measurements by Regner et al.[15] and thin film thermal conductivity

measurements. The two amorphous materials studied have significantly different contributions

from propagating and non-propagating vibrational modes, which is evident in their accumulation

functions and the comparison of the predictions to experimental measurements.

In Chapter 5, the major contributions of the work are presented and suggestions for future

study are discussed. The results presented in this work provide a theoretical and computational

framework for the study of emerging disordered and nanoscaled systems.
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Chapter 2

Vibrational Lifetimes from Molecular

Dynamics

Two frequency-domain methods for predicting phonon frequencies and lifetimes using the phonon

spectral energy density are described. Both methods draw input from molecular dynamics sim-

ulations and lattice dynamics calculations, but differ in the form of the phonon spectral energy

density. One phonon spectral energy density expression (referred to as Φ) can be formally de-

rived from lattice dynamics theory. A similar approach in the time domain has been validated

[12]. The other phonon spectral energy density expression (referred to as Φ′) has been proposed

[112] but not validated. The expressions for Φ and Φ′ are presented and then applied to pre-

dict the phonon properties and thermal conductivities of three systems: Lennard-Jones argon,

Stillinger-Weber silicon, and a carbon nanotube modeled using the reactive empirical bond order

potential. Φ′ does not capture the total phonon spectral energy density predicted by Φ and there-

fore cannot correctly predict the phonon lifetimes or thermal conductivity. Its use infuture work

is discouraged and we reccomend the use of Φ.
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2.1 Introduction

Phonons are the dominant carriers of thermal energy in dielectric and semiconducting crystals

[16, 17, 18, 19, 113, 114]. While substantial effort has been devoted to developing theories of

phonon transport, the current understanding is incomplete, even in bulk materials. For example,

which phonon modes dominate thermal energy transport and the importance of interactions in-

volving four or more phonons are still being investigated [17, 18, 26, 29, 113]. The situation

becomes more complicated in nanostructures, where the phonons also interact with free surfaces

and interfaces [13, 70, 77, 78, 79, 85, 115, 116, 117, 118, 119, 120, 121].

Analytical models of thermal transport, such as the Debye model, are limited by the necessary

approximations and assumptions [13, 21, 22]. With the Green-Kubo or non-equilibrium direct

methods, molecular dynamics (MD) simulations can be used to predict thermal conductivity, but

only in a classical (i.e., high-temperature) framework [12, 29, 77, 81, 99, 122, 123]. Because

the analysis in these two MD-based methods is performed at the system level, no information

about the phonons is obtained. Phonon specific heats, group velocities, and lifetimes are the

required inputs for predicting thermal conductivity at the phonon-mode-level using Boltzmann

transport equation-based models [12, 13, 29, 81, 85, 99, 123]. These phonon properties can

be predicted using harmonic and anharmonic lattice dynamics calculations [12, 17, 19, 88, 99,

124], where quantum statistical effects can be naturally included. Anharmonic lattice dynamics

calculations are limited to three-phonon scattering events, however, and are thus only valid at

low temperatures [12, 17, 18, 29].

At high temperature, four-phonon and higher-order processes become important to thermal

transport [12, 17, 18, 29]. All orders of phonon processes are present in a MD simulation as the

positions and momenta of the atoms are evolved using the full anharmonicity of the interatomic

interactions [29, 81]. Phonon properties can be predicted from a MD simulation using normal

mode analysis in the time domain [12, 81, 85, 99, 101, 103]. In Section 2.2.1, we will describe

how this approach can be performed in the frequency-domain using the phonon spectral energy
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density (SED, referred to as Φ). An alternative expression for the phonon SED (referred to as

Φ′), was recently proposed but has not been rigorously tested [112, 125, 126]. Φ
′ was first used

to predict the phonon dispersion curves of carbon nanotubes (CNTs) [125]. Thomas et al. used

Φ′ to predict the phonon lifetimes and thermal conductivity of isolated and water-filled CNTs,

obtaining good agreement with other atomistic predictions [112]. The phonon lifetime reduc-

tions speculated for water-filled CNTs [112] and CNTs on SiO2 substrates [127] suggest that Φ′

captures phonon physics at least qualitatively. The phonon lifetimes and thermal conductivity for

PbTe [128] and Half Heusler alloys [36] have also been predicted using Φ′. De Koker predicted

the phonon lifetimes and thermal conductivity for MgO using an expression similar to Φ′ (but

different than Φ) [107]. Another recent atomistic study using Stillinger-Weber silicon predicted

phonon lifetimes using both Φ and Φ′, but a detailed comparison of the predictions between the

two was not performed [129].

The objective of this work is to assess the validity of Φ′ as a phonon SED by comparing the

phonon properties it predicts to those predicted by Φ. In Section 2.2.1, we present the correct

phonon SED (Φ), which requires the phonon mode eigenvectors. The expression for Φ is well-

defined theoretically and has been tested and validated in previous studies in the time domain

[12, 99]. In Section 2.2.3, we present the proposed alternative expression for the phonon SED,

Φ′, which does not require the phonon mode eigenvector [112]. Phonon frequencies, lifetimes,

and thermal conductivities are then predicted and compared using Φ and Φ′ for three test systems:

Lennard-Jones (LJ) argon [130] in Section 2.4.1, Stillinger-Weber (SW) silicon [131] in Section

2.4.2, and an (8,8) CNT modeled with the reactive empirical bond order (REBO) potential [132]

in Section 2.4.3. While Φ′ is found to accurately predict the phonon frequencies, we find that

it does not correctly predict the phonon lifetimes because it does not capture the total phonon

spectral energy density.
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2.2 Phonon Spectral Energy Density

2.2.1 As Derived from Normal Mode Coordinates, Φ

The correct expression for the phonon SED, Φ, can be derived from the formulation of anhar-

monic lattice dynamics theory [16, 17, 18, 19]. As shown in Appendix A.1, the phonon SED at

wavevector κκκ is a function of frequency, ω, and is given by

Φ(κκκ, ω) =
3n∑
ν

C0(
κκκ
ν)

Γ(κκκν) /π

[ω0(
κκκ
ν)− ω]2 + Γ2(κκκν)

, (2.1)

which is a superposition of 3n Lorentzian functions with centers at ω0(
κκκ
ν) and linewidths Γ(κκκν)

(one for each polarization, ν). The C0(
κκκ
ν) terms are mode-dependent constants. For simplicity,

we refer to Φ(κκκ, ω) as Φ. The kinetic energy normal mode coordinate, q̇(κκκν ; t), is [19]

q̇(κκκν ; t) =

3,n,N∑
α,b,l

√
mb

N
u̇α(lb; t) e

∗(κκκ b
ν α) exp[iκκκ · r0( l0)], (2.2)

where e(κκκ b
ν α) are the components of the time-independent phonon mode eigenvector (see Section

2.3.2), n is the number of atoms in the unit cell, mb is the mass of the bth atom in the unit cell

and r0( l0) is the equilibrium position vector of the lth unit cell. There are N total unit cells and

u̇α(lb; t) is the α-component of the velocity of the bth atom in the lth unit cell at time t.

Given a set of atomic velocities from MD simulation and the phonon mode eigenvector, Φ

can be calculated using

Φ(κκκ, ω) = 2
3n∑
ν

T(κκκν ;ω) = 2
3n∑
ν

lim
τ0→∞

1

2τ0

∣∣∣∣ 1√
2π

∫ τ0

0

q̇(κκκν ; t) exp(−iωt)dt
∣∣∣∣2 , (2.3)

and then fit using Equation (2.1) to extract the phonon properties ω0(
κκκ
ν) and Γ(κκκν). The phonon

lifetime, τ(κκκν), is defined as 1/[2Γ(κκκν)]. In practice, τ0 should be much larger than the longest

phonon lifetime and the continuous fourier transform in Equation (2.3) is performed using a
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discrete fast fourier transform (see Section 2.4.1, 2.4.2 and 2.4.3).

2.2.2 Formulation in the Time-Domain

Previous work using normal mode analysis has represented the phonon energy in the time domain

[12, 81, 85, 99, 101, 103], while Φ is a representation of the phonon energy in the frequency

domain. The time- and frequency-domain approaches are mathematically equivalent by use of

the Wiener-Khinchin theorem [36, 133], which applied to Eq. (2.1) gives

T(κκκν ; t)T(κκκν ; 0)

T(κκκν ; 0)T(κκκν ; 0)
= cos2[ωa(

κκκ
ν) t] exp[−2Γ(κκκν) t]. (2.4)

The frequency-domain approach using the normal mode kinetic energy has the advantage of

predicting both the phonon lifetime and frequency by fitting a simpler function than is required

in the time-domain approach.

The time-domain approach can be simplified by calculating the normal mode coordinate,

q(κκκν ; t),

q(κκκν ; t) =
∑
b,l

(mb

N

)1/2

exp[iκκκ · r0( l0)]e
∗
b(
κκκ
ν) · u(lb; t) , (2.5)

and using it along with Eq. (2.2) to calculate the total normal mode energy, E(κκκν ; t) [Eq. (A.6)].

The autocorrelation of the total normal mode energy is

E(κκκν ; t)E(κκκν ; 0)

E(κκκν ; 0)E(κκκν ; 0)
= exp[−2Γ(κκκν) t], (2.6)

where ω0 is the anharmonic frequency (as opposed to that predicted from harmonic lattice dy-

namics). Thus, one can find the lifetime by fitting the normalized autocorrelation of the mode

total energy to an exponential decay. Instead of fitting an exponential function, the lifetime can
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be approximated as

τ(κκκν) =

∫ ∞
0

E(κκκν ; t)E(κκκν ; 0)

E(κκκν ; 0)E(κκκν ; 0)
dt, (2.7)

an expression that is beneficial when studying disordered systems (see Section 3.3.3.1 and Ap-

pendix A.3).

2.2.3 Alternative Formulation, Φ′

We now seek to motivate the expression Φ′ that was proposed in previous studies, but has not

been validated [112, 125, 126]. Thomas et al. [112] define

Φ′(κκκ, ω) =
1

4πτ0

3∑
α

n∑
b

mb

N

∣∣∣∣∣
N∑
l

∫ τ0

0

u̇α(lb; t) exp[Θ]dt

∣∣∣∣∣
2

, (2.8)

where Θ ≡ i[κκκ·r0( l0)−ωt]. Thomas et al. [112] claim that Φ′ represents the phonon SED. As seen

in Eqs. (2.5) and (2.2), the phonon mode eigenvectors are necessary to properly map between the

atomic velocities and the normal mode coordinates. This need for the eigenvectors is the essential

difference between the expressions for Φ and Φ′. The potential advantage of Φ′ is that other than

the wavevectors, which can be determined from the crystal structure, no phonon properties need

to be known a priori. However, to identify the degenerate modes in Φ′, the phonon frequencies

are necessary (see Section 2.3.2). Since Φ′ does not require the phonon mode eigenvector, it can

(in principle) be used to study disordered systems or perturbed crystalline systems (e.g. dilute

alloys [36], water-filled CNTs [112], and CNTs on substrates [127]). Despite its use in previous

studies, Φ′ has not been rigorously validated. The interpretation of Eq. (2.8) is investigated

in Appendix A.2. For simplicity, we refer to Φ′(κκκ, ω) as Φ′. Given a set of atomic velocities,

Thomas et al. extract the phonon properties ω0(
κκκ
ν) and τ(κκκν) from Equation (2.8) by fitting Φ′ for

a given wavevector to a superposition of Lorentzian functions.
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2.3 Computational Details

2.3.1 Allowed Wavevectors

Now that we have presented the two expressions for the phonon SED, we will provide the com-

putational details of how they can be evaluated and used to predict phonon properties. The

SED is defined for the allowed wavevectors of a crystal, which can be specified from the crystal

structure’s Bravais lattice, its basis (i.e., unit cell), and the size of the computational domain. A

D-dimensional Bravais lattice is a collection of points with positions

r0( l0) =
D∑
α

Nαaα, (2.9)

where aα are the lattice vectors and Nα is an integer [19]. The unit cell is the building block of

the crystal and is placed on the points defined by the Bravais lattice. The equilibrium position of

any atom in the crystal can be described by

r0(lb) = r0( l0) + r0(0
b) , (2.10)

where r0(0
b) is the equilibrium position of the bth atom in the unit cell relative to r0( l0). The

allowed wavevectors for any crystal structure are defined by

κκκ =
∑
α

bα
nα
Nα

, (2.11)

where bα are the reciprocal lattice vectors and−Nα/2 < nα ≤ Nα/2, where nα are integers and

Nα are now constant even integers. The wavevectors are taken to be in the first Brillouin zone

[130].

For the LJ argon and SW silicon systems studied here, the cubic conventional cells are used

with four (argon) and eight (silicon) atoms per unit cell. For the MD simulations of LJ argon and
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SW silicon, cubic simulation domains are used (i.e., N1 = N2 = N3 = N0) [12, 81, 123]. For

the CNT, the Brillouin zone is one-dimensional, so that N1 = N2 = 1, and we take N3 = 50

[112].

2.3.2 Phonon Lifetimes and Frequencies

Once the allowed wavevectors are specified, the atomic velocities from an MD simulation can be

used to calculate Φ′ using Equation (2.8). To calculate Φ [Equation (2.3)], requires the phonon

mode eigenvector, which can be obtained using harmonic lattice dynamics calculations and the

finite temperature lattice constant (i.e., quasi-harmonic lattice dynamics calculations) [19, 134].

The Φ and Φ′ methods can used for any material system where there are available interatomic

potentials.

The phonon frequencies and lifetimes are found by fitting the spectral curves Φ and Φ′ with

Lorentzian functions using a non-linear least squares method. Both of these phonon properties

are independent of the Lorentzian peak magnitude. For Φ′, the different polarizations at a given

wavevector are superimposed by definition of Equation (2.8). The different polarizations can be

fit individually using single Lorentzian peaks or as a superposition of peaks. At high tempera-

tures, the broadening of the peaks from different polarizations can make it difficult to uniquely

locate the peaks in Φ′. Knowledge of the quasi-harmonic frequencies is necessary to identify the

unique peaks in Φ′ as well as degeneracies. [12, 135].

Φ has the advantage that degenerate and nearly degenerate polarizations can be isolated and fit

individually. The uncertainty in the predicted phonon frequencies is on the order of the frequency

resolution used to perform the fast Fourier transforms required to evaluate Φ and Φ′, which is

102 − 104 less than the phonon frequencies studied in this work (see Sections 2.4.1, 2.4.2, and

2.4.3). At the temperatures studied in this work, we find that fitting single or simultaneous

peaks in either Φ or Φ′ results in less than five percent difference in the predicted lifetimes. The

uncertainty from fitting the Lorentzian functions is between five and ten percent of the predicted
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lifetimes, with the error increasing with increasing temperature.∗

To illustrate the procedure, Φ was calculated for LJ argon (Section 2.4.1) with N0 = 10

and T = 20 K, where T is temperature. Φ for the two modes denoted by A and B [see Fig.

A.1(b)] and wavevector [π/5a, π/5a, π/5a] is shown in Fig. 2.1(b). The lower-frequency peak

corresponds to the longitudinal acoustic mode, [19] while the higher frequency peak corresponds

to an acoustic mode which has been zone-folded. As discussed in Section 2.2.2, the frequency

and lifetime extraction in normal mode decomposition can als be performed in the time domain.

The autocorrelation of the normal mode kinetic and total energies for the two modes (A and B)

are plotted in Fig. 2.1(a). The fits to Eq. (2.6) for the total energy are also plotted and fall on top

of the raw data. The inset to Fig. 2.1(a) shows the integration of the total energy according to

Eq. (2.7) and the converged values of the lifetimes. The time-domain analysis on the total mode

energy has the advantage that only one property needs to be fit – the lifetime. Extracting the

frequency from the kinetic energy in the time domain is challenging, however, particularly for

short lifetimes, where they will be only a few oscillations in the decay. The frequency is easily

extracted from the frequency-domain analysis.

∗The range of data must be selected when fitting the Lorentzian functions to Φ or Φ′. This range should be large
enough for the Lorentzian functions to decrease significantly from their value at half-width at half-maximum, where
the linewidth is specified, but not too large as to pick up noise. The error in predicting the lifetime is obtained by
varying the range of data used to fit the Lorentzian function.
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Figure 2.1: Raw data and fits for normal mode decomposition in (a) time-, and (b) frequency-
domain analysis for two of the [100] phonon modes from the conventional unit cell for N0 =
10 [see Fig. A.1(b)] The inset in (a) shows the convergence of the lifetime according to Eq.
(2.7). In (b), the vertical lines denote the frequency predicted from harmonic lattice dynamics
calculations.
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2.3.3 Thermal Conductivity

Once the frequencies and lifetimes of all phonon modes in the first Brillouin zone are obtained,

the bulk thermal conductivity in direction n, kn, can be calculated from [20]

kn =
∑
κκκ

∑
ν

cph(
κκκ
ν) v

2
g,n(κκκν) τ(

κκκ
ν) . (2.12)

Here, cph is the phonon volumetric specific heat and vg,n is the component of the group velocity

vector in direction n. Since the systems we consider are classical and obey Maxwell-Boltzmann

statistics [86], the specific heat is kB per mode in the harmonic limit, where kB is the Boltzmann

constant. As temperature increases, anharmonicity causes the mode specific heats to deviate

from kB [81]. The effect is small for the systems and temperatures studied here. For LJ argon,

the mode-averaged specific heat has been predicted to be 0.95kB per mode at a temperature of

40 K and approaches kB with decreasing temperature [81]. For SW silicon at a temperature of

300 K, the predicted mode-averaged specific heat is 1.01kB per mode [103]. For the CNT at

T = 300 K, we predict the mode-averaged specific heat to be 1.03kB per mode. Because we

do not have mode-dependent specific heats, we take the specific heat to be kB per mode for the

three systems studied (argon, silicon, and CNT). The group velocity vector is the gradient of the

dispersion curve (i.e., ∂ω/∂κκκ) and can be calculated from the frequencies and wavevectors using

finite differences. In this work, the group velocities are calculated using the frequencies from

quasi-harmonic lattice dynamics calculations because a smaller finite difference in wavevector

can be used than what is available from the MD simulations (see Section 2.3.1). †

†The anharmonic frequency shift affects the group velocity. McGaughey and Kaviany find that anharmonic and
quasi-harmonic predictions of the group velocity differ for LJ Argon by less than one percent at a temperature of
50 K and that the difference decreases with decreasing temperature [81]. The anharmonic frequency shifts are on
average a few percent for LJ argon at a temperature of 40 K and are less for the other temperatures and systems
studied here.
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2.3.4 Computational Cost and Work Flow Optimization

The computational time required to perform normal mode decomposition depends on the number

of atoms in the system, Na, and the number of atoms in the unit cell, n. For the eigenvalue prob-

lem associated with harmonic lattice dynamics, the time required for each wave vector scales as

n3 and the required memory scales as n2. This poor scaling limits the study of systems with more

than 10, 000 atoms in the unit cell (as might be required for a nanostructure such as a thin films

or nanowire), for which the calculations will take one to two days given current computational

resources. The harmonic lattice dynamics calculations for different wave vectors are trivially

parallelizable and can be performed using the open-source GULP package [134]. For efficiently

parallel MD algorithms (e.g., the open-source LAMMPS package [136]), the simulation time

and required memory scale as Na.

The computational time and memory required to project the atomic velocities and positions

onto the normal mode coordinates scale as Na and these calculations are trivially parallelizable

over the normal modes. Reasonable computational times can be realized by using LAMMPS to

perform the MD simulations, outputting the atomic trajectories, and writing programs to perform

the normal mode decomposition using a scripting language like Python with the NumPy module

[137]. Because normal mode decomposition is trivially parallelizable on multi-core architectures

over the normal modes, massively parallel calculations can be achieved by using a PBS scheduler

such as TORQUE. Ideally, however, to reduce memory requirements, the projection of the atomic

positions and velocities onto the normal mode coordinates and calculations of the normal mode

potential and kinetic energies would be directly built into the MD code. The energies would then

be periodically output to perform the required autocorrelations and/or Fourier transforms.

In normal mode decomposition, the sampling rate must be high enough to capture the maxi-

mum frequency in the system. The sampling rate and total run time should be chosen in powers

of two as a convenience in performing fast Fourier transforms. Obtaining the phonon properties

from Eqs. (2.1), (2.4), (2.6), and (2.7), requires specification of a time or frequency range and
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initial guesses for the frequency and lifetime. These parameters can be obtained from observa-

tion of the raw data. An initial guess for the frequency can also be obtained from the harmonic

lattice dynamics calculations. When investigating new systems, it is best to fit the phonon prop-

erties in a semi-automated way (i.e., each fit should be visualized so that the fitting parameters

can be tuned). Once appropriate fitting parameters are chosen, the fitting can usually be fully

automated for large data sets. For crystalline systems, only the properties of the modes of the

irreducible wave vectors are needed, such that the autocorrelations or Fourier transforms for

symmetric modes can be averaged before fitting.

For the Φ and Φ′ methods, the computational cost of evaluating Equation (2.8) is less than

that for Equation (2.3) by a factor of 3b. For bulk crystals, the number of atoms in the unit cell is

typically small (n < 10). For the (8,8) CNT system, n = 32 and evaluating Φ′ is two orders of

magnitude less expensive than evaluating Φ.

To calculate the phonon lifetimes, the MD simulation time should be an order of magnitude

longer than the longest phonon lifetime [138]. If only the phonon frequencies are required,

however, the location of the peaks in Φ and Φ′ develop in a time on the order of the inverse of

the phonon frequency, 1/ω0(
κκκ
ν). For the systems studied here, this time can be two to five orders

of magnitude less than the time needed to develop the lifetimes.

Fitting Φ′ becomes challenging at higher temperatures, when the phonon linewidths broaden

and become comparable to the spacing between mode frequencies. The cost of fitting Φ′ can be

reduced by fitting the peaks from all allowed wavevectors in the system simultaneously, but the

error associated with this procedure is unknown [36]. We find that a semi-automated procedure,

whereby the fits are visualized, is necessary to ensure that all peaks are fit correctly. While the

computational cost of fitting Φ′ is much smaller than the computational cost of calculating Φ′,

the semi-automated fitting procedure can be of similar time cost to the user. The cost of fitting

Φ is much smaller because the different polarization peaks can be isolated and the fitting can be

fully automated.
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2.4 Case Studies

2.4.1 Lennard-Jones Argon

We now use MD simulation to compare the SED, phonon properties, and thermal conductivity

calculated for LJ argon using Φ and Φ′. The MD simulations are performed using LAMMPS.[136]

A truncated and shifted potential cutoff scheme is used with a cutoff radius of 8.5 Å. The quasi-

harmonic phonon frequencies, eigenvectors, and group velocities are generated using GULP

[134]. We consider temperatures of 5, 20, and 40 K at zero-pressure with lattice constants of

5.278, 5.315, and 5.371 Å. For LJ argon, Turney et al. found that lattice dynamics-based pre-

dictions of thermal conductivity (e.g., by anharmonic lattice dynamics or Φ) start to diverge

from MD-based predictions (e.g., from the direct or Green-Kubo methods) above half the melt-

ing temperature (Tmelt ≈ 80 K) [12]. Here, we limit the temperature to below half the melting

temperature for the three systems studied (argon, silicon, and CNT).

The MD system consists of N1 × N2 × N3 = 83 = 512 conventional cubic unit cells for a

total of 2048 atoms (b = 4 atoms). Using a 4.285 fs time step, the system is equilibrated for

220 time steps before collecting data every 25 time steps for an additional 220 time steps in the

NV E ensemble (constant number of atoms, system volume, and total system energy) [86]. The

sampling rate must be high enough to capture the highest phonon frequency in the system. The

sampling rate and total run time are chosen in powers of two as a convenience in performing the

fast Fourier transforms required to efficiently evaluate Φ and Φ′. The same MD simulation data

are used to calculate Φ and Φ′. Five simulations with different initial conditions are performed

and the Φ and Φ′ values are averaged before the peak fitting. Φ and Φ′ are further averaged over

degenerate wavevectors in the Brillouin zone, reducing the wavevectors to the first octant [87].

The SED (Φ and Φ′) for the wavevector [π/2a,0,0] is presented in Fig. 2.2 for all three

temperatures (the edge of the Brillouin zone is at [π/a,0,0]). For Φ, the spectral curve is plotted

as a superposition over the twelve phonon polarizations, with degeneracy reducing the number
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Figure 2.2: The phonon spectral energy density (Φ) is plotted as larger blue circles. The pro-
posed alternative expression for the phonon spectral energy density (Φ′) is plotted as smaller
green points. The wavevector is (π/2a,0,0). Note that peak broadening at higher temperatures
and frequencies above 10 rads/ps can force peaks close in frequency for Φ′ to be fit as a sin-
gle Lorentzian function. Φ does not suffer from this issue since the broadened peaks can be fit
individually.

of peaks to seven. Overall, Φ′ does not equal the total phonon spectral energy density Φ, but

the major features are similar. At all temperatures there are linewdith variations between the

two spectral curves. The peak magnitudes become comparable for Φ and Φ′ as the temperature

increases.
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The phonon frequencies and lifetimes extracted for all allowed wavevectors in the first Bril-

louin zone using Φ and Φ′ at each of the three temperatures are compared on a mode-by-mode

basis in Figs. 2.3(a), 2.3(b), and 2.3(c). There, ω0, ω′0, τ , and τ ′ refer to the mode properties pre-

dicted using Φ and Φ′. The phonon frequencies agree well at all three temperatures, with increas-

ing scatter at high temperatures and high frequencies. This scatter is due to the high-frequency

peak broadening seen in Fig. 2.2 at T = 40 K, which can force peaks close in frequency for

Φ′ to be fit as a single Lorentzian function. The frequencies predicted by Φ and Φ′ include the

effects of anharmonicity, which increase the frequencies compared to the quasi-harmonic predic-

tions [12, 135]. The agreement between the frequencies predicted from Φ and Φ′ is explained in

Appendix A.2.

The lifetimes show large scatter between Φ and Φ′ on a mode-by-mode basis, with increasing

scatter at high temperature that shows no systematic difference. The scatter at high frequencies

is in part due to the peak broadening seen in Fig. 2.2, which can force peaks close in frequency

for Φ′ to be fit as a single Lorentzian function with a single lifetime. The broadening does not

affect fitting at low frequencies, where the linewidths are much smaller than the peak spacings.

There, any scatter comes solely from the difference between Φ and Φ′.
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Figure 2.3: Comparison of the phonon frequencies and lifetimes predicted using Φ (ω and τ )
and Φ′ (ω′ and τ ′) for LJ argon at temperatures of (a) 5 K, (b) 20 K, and (c) 40 K. The phonon
frequencies agree well at all three temperatures, while the phonon lifetimes show large scatter.
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The phonon properties are then used to predict thermal conductivity using Equation (2.12).

The results are presented in Table 3.1. The bulk thermal conductivities provided in Table 3.1 are

predicted using the finite simulation-size scaling procedure discussed in [12]. The bulk thermal

conductivities predicted from Φ′ are smaller and outside the uncertainty for those predicted from

Φ for temperatures of 5 and 20 K. While the bulk thermal conductivities at a temperature of 40 K

agree within their uncertainties, the predicted mode-by-mode lifetimes show large scatter [Fig.

2.3(c)] and the agreement should be regarded as coincidental.

The disagreement between Φ and Φ′ in thermal conductivity comes directly from the differ-

ences in the phonon lifetimes. All other properties (frequencies, group velocities, specific heats)

are nearly or exactly the same for the two calculations. The bulk thermal conductivities predicted

from Φ and Φ′ are also compared to predictions from the Green-Kubo method[86] in Table 3.1.

For N1 = N2 = N3 = 8, the thermal conductivity predicted by the Green-Kubo method is

converged with respect to the simulation size [81]. The same MD data used to calculate Φ and

Φ′ is used for the Green-Kubo predictions. For all three temperatures, there is good agreement

between the thermal conductivity predictions using Φ and Green-Kubo. For temperatures of 20

and 40 K, there is good agreement between the predictions from Φ, Green-Kubo, and previous

reports using non-equilibrium MD, anharmonic lattice dynamics, and time-domain Φ [12].
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Table 2.1: Thermal conductivity values in W/m-K predicted using the Φ, Φ′, and Green-Kubo
methods. The predictions for Φ and Green-Kubo for the LJ system are in good agreement
with those from other atomistic simulation methods [12] while those from Φ′ differ and show
no consistent behavior. The uncertainties in the predicted thermal conductivities for Φ and
Φ′ come predominantly from the finite simulation-size scaling procedure (see Ref. [12, 85]),
where the phonon properties and thermal conductivity are predicted for increasing system sizes
(N1 = N2 = N3) to extrapolate a bulk thermal conductivity. For SW silicon and the CNT, the
extrapolation procedure is not performed.

T (K) Green-Kubo Φ Φ′

LJ (bulk)
5 8.0 ± 0.30 7.9 ± 0.42 5.8 ± 0.31
20 1.3 ± 0.15 1.2 ± 0.07 1.0 ± 0.10
40 0.45 ± 0.07 0.47 ± 0.03 0.49 ± 0.05
SW (N1 = N2 = N3 = 6)
300 322 ± 16 396 ± 38
CNT (N1 = N2 = 1, N3 = 50)
300 428 ± 21 398 ± 40
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2.4.2 Stillinger-Weber Silicon

We next compare the phonon properties and thermal conductivity predicted from Φ and Φ′ for

SW silicon [131] at a temperature of 300 K and zero pressure with a lattice constant of 5.437

Å. The SW system is stiffer (larger phonon group velocities, frequencies, and lifetimes) than

LJ argon and is an additional test to determine if there is a systematic error in the predictions

from Φ′. The MD simulations are performed using LAMMPS [136]. The MD system consists

of N1 × N2 × N3 = 63 = 216 conventional unit cells for a total of 1728 atoms (b = 8 atoms).

The phonon frequencies, eigenvectors, and group velocities are generated using GULP [134].

Using a 0.5 fs timestep, the system is equilibrated for 220 time steps before collecting data

every 25 time step for 222 time steps in the NV E ensemble [86]. As with the LJ system, the

sampling rate is determined by the highest phonon frequency in the system. Five simulations

with different initial conditions are performed and the Φ and Φ′ values are averaged before the

peak fitting. Φ and Φ′ are further averaged over degenerate wavevectors in the Brillouin zone,

reducing the wavevectors to the first octant [87].

The extracted phonon frequencies and lifetimes are plotted in Fig. 2.4. As with the LJ system,

the phonon frequencies are predicted accurately by Φ′ but the lifetimes show large scatter on a

mode-by-mode basis. For the system size studied, Φ′ predicts a larger thermal conductivity

than Φ outside the prediction uncertainties, in contrast to the LJ system (see Table 3.1). The

disagreement in thermal conductivity comes directly from the phonon lifetimes.
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Figure 2.4: Comparison of the phonon frequencies and lifetimes predicted using Φ (ω and τ )
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2.4.3 Carbon Nanotube

Finally, we compare the phonon properties and thermal conductivities predicted by Φ and Φ′ for

an (8,8) CNT (diameter of 1.10-nm and length of 12.3 nm) at a temperature of 300 K and zero

pressure [112]. The interactions in the CNT system are modeled using the REBO potential with-

out the four-body interaction term [132]. The MD simulations are performed using an in-house

code. The MD system consists of 1600 atoms (32 atoms/unit cell). The phonon frequencies,

eigenvectors, and group velocities are generated using an in-house code. The purpose of simu-

lating this system is to check the results of Thomas et al. [112] (who used Φ′ and non-equilibrium

MD), and to compare the predictions of Φ′ and Φ.

Using a 1.0 fs timestep, the system is equilibrated for 220 time steps before collecting data

every 23 time step for 222 time steps in theNV E ensemble [86]. As with the LJ and SW systems,

the sampling rate is determined by the highest phonon frequency in the system. Five simulations

with different initial conditions are performed and the Φ and Φ′ values are averaged before the

peak fitting. Since the Brillouin zone of the CNT is one-dimensional, Φ and Φ′ are further

averaged over directionally-degenerate wavevectors.

The phonon frequencies and lifetimes for the allowed wavevectors in the one-dimensional

Brillouin zone are shown in Fig. 2.5. Like the LJ and SW silicon systems, the phonon frequencies

can be predicted accurately by Φ′, but the lifetimes show large scatter. The estimated thermal

conductivity of the CNT predicted using Φ′ is in agreement with the results of Thomas et al.

[112]. The thermal conductivity predicted by Φ′ is less than that predicted by Φ, but not outside

their uncertainties.
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(ω′, τ ′) for a (8,8) CNT modeled using the REBO potential. The phonon frequencies agree well,
while the phonon lifetimes show large scatter.
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2.5 Summary

We presented the correct phonon SED, Φ, and its relation to the phonon frequencies and life-

times. We then presented an alternative formulation to the phonon spectral energy density, Φ′,

which does not require the phonon mode eigenvectors. Because Φ′ does not contain the eigen-

vectors, this alternative formulation does not represent the phonon spectral energy density, but

does contain information about the phonon dispersion as the temperature approaches 0 K (see

Appendix A.2).

We then calculated the phonon SED for LJ argon, SW silicon, and a CNT modeled with the

REBO potential using Φ and Φ′. The phonon frequencies and lifetimes predicted from Φ and Φ′

are shown in Figs. 2.3, 2.4 and 2.5. The frequencies are in good agreement between the two SED

methods, while the lifetimes show large scatter.

The phonon SED Φ is well-defined theoretically, while Φ′ does not properly map to the

phonon energies since it is missing the phonon mode eigenvector. We deduce that this is the rea-

son Φ′ does not accurately predict the phonon lifetimes. It is surprising how close the predicted

thermal conductivities can be using Φ and Φ′ (LJ at T = 40 K and the CNT results). The ther-

mal conductivities predicted by Φ and Φ′, however, show no consistency for the three systems

studied.

The most important predictions are the mode-by-mode phonon properties. Of particular im-

portance are the lifetimes, which are the key input for Boltzmann transport equation-based mod-

els [13]. Thus, we do not recommend Φ′ for predicting phonon lifetimes or thermal conductivity.

Any agreement in thermal conductivity predictions between atomistic studies[112] and experi-

ment [107, 128] should be regarded as coincidental, and the phonon lifetime reductions predicted

for systems with additional scattering methods [36, 112] should only be interpreted qualitatively.

The use of Φ′ in future work is discouraged and we reccomend the use of Φ.
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Chapter 3

Predicting Alloy Vibrational Mode

Properties using Lattice Dynamics

Calculations, Molecular Dynamics

Simulations, and the Virtual Crystal

Approximation

The virtual crystal (VC) approximation for mass disorder is evaluated by examining two model

alloy systems: Lennard-Jones argon and Stillinger-Weber silicon. In both material systems, the

perfect crystal is alloyed with a heavier mass species up to equal concentration. The analysis

is performed using molecular dynamics simulations and lattice dynamics calculations. Mode

frequencies and lifetimes are first calculated by treating the disorder explicitly and under the VC

approximation, with differences found in the high-concentration alloys at high frequencies. No-

tably, the lifetimes of high-frequency modes are underpredicted using the VC approximation, a

result we attribute to the neglect of higher-order terms in the model used to include point-defect

scattering. The mode properties are then used to predict thermal conductivity under the VC ap-
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proximation. For the Lennard-Jones alloys, where high-frequency modes make a significant con-

tribution to thermal conductivity, the high-frequency lifetime underprediction leads to an under-

prediction of thermal conductivity compared to predictions from the Green-Kubo method, where

no assumptions about the thermal transport are required. Based on observations of a minimum

mode diffusivity, we propose a correction that brings the VC approximation thermal conductiv-

ities into better agreement with the Green-Kubo values. For the Stillinger-Weber alloys, where

the thermal conductivity is dominated by low-frequency modes, the high-frequency lifetime un-

derprediction does not affect the thermal conductivity prediction and reasonable agreement is

found with the Green-Kubo values.

3.1 Introduction

Due to their potentially low thermal conductivities, disordered materials (e.g., alloys, amorphous

solids, aerogels) are used in applications ranging from thermoelectric energy conversion to ther-

mally insulating barriers. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Disordered lattices are a subgroup of

disordered materials where the atomic positions follow a lattice structure but the constituent

species are spatially random. Examples include isotopic solids, where the species have the same

electronic structure but small mass variations,[30, 35] and alloys, our focus here, where at least

two distinct species are present.[34, 139]

We further restrict our focus to dielectric or semiconducting solids, where the heat is con-

ducted by the atomic vibrational modes. Predicting the thermal conductivity of such materi-

als requires the properties of the full spectrum of vibrational modes. [20, 48, 73] Accurate

predictions of these properties for crystalline systems (i.e., perfect lattices) can be made with

anharmonic lattice dynamics (ALD) theory using input from density functional theory (DFT)

calculations.[26, 28, 29, 30, 31, 32, 36, 37, 38, 39] Computational costs limit DFT calculations

to less than 100 atoms, however, making it challenging to explicitly incorporate the effects of

disorder. [27, 30, 37, 38, 39, 104, 140]
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Disorder is typically included in the ALD framework using Abeles’ virtual crystal (VC) ap-

proximation, whereby the disordered solid is replaced with a perfect VC with properties equiva-

lent to an averaging over the disorder (e.g., atomic mass, bond strength).[34] The ALD calcula-

tions are performed on a small unit cell with the averaged properties (i.e., all vibrational modes

are phonons) and phonon-phonon and phonon-disorder scattering are included as perturbations.

[30, 34, 35, 37, 39] Except for low-frequency (long-wavelength) acoustic modes, the general

validity of this assumption is unclear. We will refer to this approach as VC-ALD. Recent work

using DFT calculations and the VC-ALD approach has modeled disordered lattices with rela-

tively large (∼ 10-100 W/m-K) [30, 38, 39] and small (∼ 1 W/m-K)[37] thermal conductivities.

No comprehensive study has been performed to assess the applicability of the VC-ALD approach

for a range of disorder strength.

The objective of this study is to investigate the use of the VC approximation for predicting the

vibrational mode properties and thermal conductivity of alloys by a detailed comparison of three

predictive methods: (i) molecular dynamics (MD)-based normal mode decomposition (NMD),

(ii) MD-based Green-Kubo (GK), and (iii) VC-ALD. By using computationally-inexpensive em-

pirical potentials for argon [Lennard-Jones (LJ) at a temperature of 10 K] [130] and silicon

[Stillinger-Weber (SW) at a temperature of 300 K], [131] we can self-consistently study the ef-

fects of disorder both explicitly and as a perturbation. For both materials, the perfect lattice is

disordered with a heavier mass species up to equal concentration, spanning a range of small to

large disorder. By spanning this range, the limits of the perturbative models are examined.

The remainder of the paper is organized as follows. In Section 3.2, the theoretical formula-

tion of thermal transport in ordered and disordered solids and the computational framework are

described. In Section 4.4, the frequencies, group velocities, lifetimes, and diffusivities of the

vibrational modes of the LJ argon alloys are predicted when the disorder is explicitly modeled

and when it is treated as a perturbation in the VC approximation. A breakdown of the VC-ALD

method is identified by a comparison with the VC-NMD method in Section 3.3.3.2 and a cor-

rection is suggested in Section 3.3.4. The vibrational mode properties are then used to predict
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thermal conductivities in Section 3.4, allowing for a comparison to the predictions of the top-

down GK method, where no assumptions about the nature of the thermal transport are required.

The vibrational mode properties and thermal conductivity of the SW silicon alloys, where low-

frequency modes dominate the thermal conductivity, are predicted in Section 3.5 to provide a

comparison and contrast to the LJ argon alloys.

3.2 Theoretical and Computational Framework

3.2.1 Thermal Conductivity Prediction

To predict the thermal conductivity of a disordered lattice, one begins with the theory for a perfect

lattice. For a perfect lattice, all vibrational modes are phonon modes, which by definition are

delocalized, propagating plane waves. [20] Using the single-mode relaxation time approximation

[20] to solve the Boltzmann transport equation gives an expression for thermal conductivity in

direction n,

kph,n =
∑
κκκ

∑
ν

cph(
κκκ
ν) v

2
g,n(κκκν) τ(

κκκ
ν) . (3.1)

Here, the sum is over the phonon modes in the first Brillouin zone, κκκ is the wave vector, and ν

labels the polarization branch. The phonon mode has frequency ω(κκκν), volumetric specific heat

cph(
κκκ
ν), n-component of the group velocity vector vg,n(κκκν), and lifetime τ(κκκν).

The relaxation time approximation has been found to be valid for lower thermal conductiv-

ity materials (e.g., Si and SiGe alloys), [26, 28, 39] while larger thermal conductivity materials

such as GaN and diamond require an iterative solution to the BTE for more accurate predictions

using Eq. (3.1). [27, 30] For the crystalline LJ argon and SW silicon phases, the lattices and

the components of their thermal conductivity tensors are cubically symmetric, so that we will

refer to kph as an isotropic scalar thermal conductivity. This isotropy will hold for disordered lat-
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tices in the infinite-size limit. Since MD simulations are classical and obey Maxwell-Boltzmann

statistics,[86] the volumetric specific heat is kB/V per mode in the harmonic limit, where V is

the system volume and kB is the Boltmann constant. This harmonic approximation for specific

heat has been shown to be valid for LJ argon and SW silicon at the temperatures of interest

here [81, 103] and is used so that direct comparisons can be made between the MD- and lattice

dynamics-based methods.

For disordered systems, the vibrational modes are no longer pure plane-waves (i.e., phonon

modes), except in the low-frequency (long-wavelength) limit. When applied in the classical limit,

the Allen-Feldman (AF) theory computes the contribution of diffusive, non-propagating modes

(i.e., diffusons) to thermal conductivity from[47]

kAF =
∑

diffusons

kB

V
DAF,i(ωi), (3.2)

where DAF,i is the mode diffusivity and ωi is the frequency of the ith diffuson. The diffusivity

of diffusons can be calculated from harmonic lattice dynamics theory. [47, 48, 52]

Assuming that all vibrational modes travel with the sound speed, vs, and scatter over a dis-

tance of the lattice constant, a, a high-scatter (HS) limit of thermal conductivity in the classical

limit is[2]

kHS =
kB

Vb
bvsa, (3.3)

where Vb is the volume of the unit cell and b is the number of atoms in the unit cell. The HS limit

will be used to discuss the differences between the LJ argon and SW silicon alloys.

3.2.2 Virtual Crystal Approximation

Under the VC approximation, the disordered solid is replaced with a perfect, single-species crys-

tal with properties (e.g., density, cohesive energy) equivalent to an averaging over the disorder

(e.g., atomic mass, bond strength).[34] The VC approximation is visualized for an alloy in Figs.
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3.1(a) and 3.1(b), where a mass-disordered supercell is replaced by a perfect crystal with an av-

eraged mass. Abeles first introduced the concept of a VC to predict the thermal conductivity of

SiGe, GaAs/InAs, and InAs/InP alloys. [34] Klemens-Callaway theory, which is valid for low-

frequency modes and small disorder, was used to model the phonon-phonon and phonon-defect

scattering. [21, 23, 34, 90, 91, 141] The Abeles theory is conceptually simple, treating both

disorder and anharmonicity as perturbations, and leads to a closed-form analytical function for

the thermal conductivity. With the use of phenomenological fitting parameters, good agreement

between the predictions and experimental measurements was found for SiGe and GaAs/InAs al-

loys. Deviations were observed for InAs/InP alloys at large concentrations of InP, which were

attributed to the large mass ratio of 3.7 between indium and phosphorus.[34]

When considering alloys, it is important to note that the overall disorder strength is deter-

mined by the mass ratio, the stiffness ratio, and the alloy concentration. Cahill and co-workers

found that as little as 6.2 × 1019 cm−3 germanium reduces the thermal conductivity of epitaxial

silicon layers by a factor of two. [142] Using the Abeles theory, they explained this result by

mass perturbative disorder alone (the Ge/Si mass ratio is 2.6). [142, 143] The relative effects of

bond and mass disorder were investigated computationally using MD simulations by Skye and

Schelling for SiGe alloys up to equal concentration. [76] They also found that mass disorder

is the dominant scattering mechanism. Subsequent studies have modeled the effect of differing

species by only including atomic mass differences.[41, 79]

Unlike the phenomenological Abeles theory, the VC-ALD approach predicts thermal conduc-

tivity by directly summing over the modes of the full vibrational spectrum, with phonon-phonon

and phonon-defect scattering treated as perturbations. [30, 37, 39] In the VC-ALD method,

the phonon-phonon scattering is predicted using ALD.[12, 29] The phonon-defect scattering is

treated using perturbative methods that can handle mass and/or bond disorder. [23, 35, 90, 91]

In Ni0.55Pd0.45, which has a large mass ratio (1.8) and concentration of each species, experimen-

tal measurements of vibrational frequencies and linewidths agree well with predictions from the

perturbative mass-disorder theory. [35, 91, 141]
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Using DFT methods to predict the mode-specific phonon properties of the VC, Lindsay and

Broido found good agreement between VC-ALD and experimental measurements of thermal

conductivity for isotopically defected GaN (the gallium isotopes have concentrations of 0.6 and

0.4 and a mass ratio of 1.03).[30] Garg et al. used DFT calculations with VC-ALD to predict the

thermal conductivity of SiGe alloys for all concentrations at a temperature of 300 K, obtaining

good agreement with experiment.[39] By including disorder explicitly in their ALD calculations,

the predicted thermal conductivity decreased by 15%. Isotopically-defected GaN and low con-

centration SiGe alloys have relatively large thermal conductivities at a temperature of 300 K (∼

100 W/m-K). Li et al. used DFT calculations with VC-ALD to predict the thermal conductiv-

ity of Mg2SixSn1−x (∼ 10 W/m-K) in good agreement with experimental measurements for all

concentrations.[38] The VC-ALD approach has also been used to predict the effect of interfacial

mixing in GaAs/AlAs superlattices, but the thermal conductivity predictions were not compared

with experimental measurements.[32] In our survey of experimental measurements and numeri-

cal modeling, we find that VC predictions tend to be accurate when the disordered lattice thermal

conductivity is significantly above the high-scatter limit [Eq. (3.3)], which tends to be around 1

W/m-K. [2, 30, 34, 39, 141, 142, 143]

An ALD study using phonon properties from DFT calculations for crystalline PbTe[31] pre-

dicted thermal conductivities of 2 W/m-K at a temperature of 300 K in fair agreement with ex-

periment. For PbTeSe alloys, a VC-ALD study predicted a small thermal conductivity reduction

compared to the perfect crystals.[37] Experimental results are limited for these alloys,[144, 145]

making it difficult to asses the validity of the VC-ALD approach for materials whose thermal

conductivities approach the high-scatter limit.

Given all these results, it is unclear what limitations exist for using the VC approach. In this

study, we will consider a low thermal conductivity alloy using the LJ potential and a high thermal

conductivity alloy using the SW potential. The computational studies discussed above were

limited to VC-ALD because of DFT calculation costs. Our use of computationally inexpensive

empirical potentials allows us to include the disorder explicitly and as a perturbation and to
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Figure 3.1: (a) Explicitly disordered alloy supercell of silicon and “heavy” silicon ([100] direc-
tion into the page). [146] (b) Equivalent VC supercell with one averaged mass. The sphere size
represents increasing mass only, no bond disorder is considered. The 8-atom conventional cubic
unit cell is shown in (b).

compare the predictions.
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3.2.3 Calculation and Simulation Details

The key to explicitly incorporating the effects of disorder is to use large disordered supercells.

Perfect and disordered lattice supercells are generated using the conventional unit cells for LJ

argon (n = 4) and SW silicon (n = 8), where n is the number of atoms in the unit cell. Supercells

are built cubically with sizeN0, whereN0 is the number of unit cell repetitions in the three spatial

directions. Supercells up to N0 = 12 (6,096 atoms) are used for the LJ argon calculations. For

SW silicon, N0 = 8 (4,096 atoms) is used for the MD-based NMD calculations and N0 ≤ 42

(592,704 atoms) is used for the MD-based GK and VC-ALD.

Disorder is created by randomly specifying the masses of the atoms on the lattice. The

composition of each lattice is labeled by mi
1−cm

j
c, where (i) mi = 1 and mj = 3 in LJ units for

argon, and (ii) mi = mSi and mj = 2.6mSi for SW silicon and “heavy silicon”, which has the

mass of germanium. Concentrations, c, of 0, 0.05, 0.15 and 0.5 are considered.

For LJ argon, the lattice constant at a temperature of 10 K is 5.290 Å.[87] The MD simula-

tions were performed using LAMMPS.[136] Efficient MD codes like LAMMPS scale linearly

with the number of atoms in the system, Na, which makes the GK method (see Section 3.4)

computationally-inexpensive when used with empirical potentials. An amorphous LJ phase, dis-

cussed in Section 3.3.4, was created by liquefying the crystal and instantly quenching by remov-

ing all kinetic energy. The energy of the resulting structure was minimized and then annealed

in an NPT (constant number of atoms N , pressure P , and temperature T ) ensemble at zero

pressure and a temperature of 10 K. The effective zero-pressure lattice constant of the amor-

phous phase at this temperature, based on the atomic density, is 5.389 Å. For SW silicon, we

use a lattice constant of 5.43 Å for all calculations, which brings the perfect crystal GK thermal

conductivity predictions at a temperature of 300 K [83, 103] into better agreement with ALD

predictions[147] compared to using the zero-pressure lattice constant.

All MD simulations are first equilibrated in a NV T (constant number of atoms, volume, and

temperature) ensemble for 106 time steps. Data is then collected from simulations in the NV E
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(constant number of atoms, volume, and total energy) ensemble. For LJ argon, the potential

energy is cutoff and shifted at 8.5 Å (the force is not adjusted). Time steps of 4.285 and 0.5 fs

were used for the LJ argon and SW silicon simulations. The same atomic trajectories are used

for the NMD and GK methods.

3.3 Vibrational Mode Properties in Alloys

3.3.1 Density of States

In this section, we begin to examine the effects of explicitly including disorder by computing

the frequencies and density of states (DOS) for the vibrational modes of disordered LJ lattice

supercells and their equivalent VCs. The frequencies are computed using harmonic lattice dy-

namics calculations with GULP.[134] For the VC, the allowed wave vectors are set by N0 and,

due to the use of the conventional unit cell, there are 12 polarization branches per wave vector.

For the disordered supercells (referred to herein as Gamma), the only allowed wave vector is

the gamma-point (i.e., κκκ = 0), where there are 12N3
0 polarization branches. Calculation of the

Gamma modes require the eigenvalue solution of a dynamical matrix of size (3Na)
2 that scales

as [(3Na)
2]3, limiting the system sizes that can be considered. This eigenvalue solution is also

required to perform the Gamma-NMD (see Section 3.3.3.1) and AF calculations (see Section

3.3.4).

The DOS for the VC and Gamma modes are plotted in Figs. 3.2(a), 3.2(b), and 3.2(c) for

concentrations of 0.05, 0.15, and 0.5 for N0 = 12 (6,912 atoms). The VC and Gamma DOS

agree at low frequencies for all concentrations, where they follow the prediction of the Debye

approximation that the DOS will scale as ω2.[130] Similar agreement between VC and Gamma

DOS at low frequencies was found in DFT predictions for SicGe1−c[39] and classical models of

amorphous SicGe1−c. [148] The Debye approximation underpredicts the DOS at moderate fre-

quency, which is due to non-linearities in the dispersion,[130] but the VC and Gamma predictions
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remain in good agreement.

The increasing average atomic mass with increasing concentration for the VC shifts all fre-

quencies downward by a factor 1/[(1− c)mi + cmj]1/2. The increasing average atomic mass for

the Gamma modes also reduces the frequencies, but not in a systematic manner. The effect of the

disorder is seen at frequencies greater than ten by a broadening and shift of the Gamma DOS to

higher frequencies because of the explicit use of light atoms in the supercell. This effect becomes

more pronounced as the concentration increases. Duda et al. observed similar high-frequency

broadening effects in model LJ alloys. [149] The high-frequency broadening is an indication

of phonon localization, which is known to first occur at the Brillouin zone edge.[150] Based on

the DOS, the vibrational modes of the explicitly disordered supercells at low frequencies are

propagating, while the broadening of the DOS at high-frequency indicates that the Gamma vi-

brational modes may differ from the VC phonon modes in this regime. This behavior is further

investigated in the next three sections.
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Figure 3.2: Vibrational DOS for LJ alloys calculated using the VC approximation and an ex-
plicitly disordered supercell (labeled Gamma) for concentrations of (a) 0.05, (b) 0.15, and (c)
0.5. VC and Gamma show similar low-frequency behavior for all concentrations. For increasing
concentrations, the frequencies of both VC and Gamma decrease, while the high frequency DOS
for Gamma spreads and reaches to a higher maximum frequency because of the explicit disorder.
The supercells are of size N0 = 12 (6,912 atoms).
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3.3.2 Dispersion and Group Velocity

The group velocity vector in a VC is defined as the gradient of the dispersion curve,

vvvg,n(κκκν) =
∂ω(κκκν)

∂κκκ
. (3.4)

We calculate the group velocities for the VC using finite differences on the frequencies calculated

from harmonic lattice dynamics.[135]

For a disordered solid, the three acoustic group velocities (two transverse and one longitu-

dinal) can be predicted using the elastic constants [134] or by finite differencing of the three

lowest frequency branches of the dispersion relation of the supercell. [62, 85] Except for this

low-frequency behavior, there is not an accepted method to predict the group velocity of a vibra-

tional mode in a disordered system, although there have been attempts. [2, 62, 85, 102, 149, 151]

In the Cahill-Pohl model, for example, the group velocity of all disordered modes is the sound

speed, vs, which is also assumed for the high-scatter model, Eq. (3.3). [2] This assumption is

not generally valid for any material.[52, 62, 85, 102, 149, 151, 152]

Calculating the structure factors of the supercell Gamma modes is a method to test for their

plane-wave character at a particular wave vector and polarization corresponding to the VC. [52,

73] Feldman et al. used the structure factor to predict an effective dispersion for a model of

amorphous silicon, but did not predict group velocities.[52] Volz and Chen used the dynamic

structure factor to predict the dispersion of crystalline SW silicon using MD simulation. [153]

Recently, the effective dispersion of a model disordered lattice was predicted using the structure

factor. [152]

The structure factor at a VC wave vector κκκV C is defined as[73]

SL,T(κκκV C
ω ) =

∑
ν

EL,T(κκκV C
ν ) δ[ω − ω(κκκ=0

ν )], (3.5)

where the summation is over the Gamma modes, ET refers to the transverse polarization and is
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defined as

EL(κκκV C
ν ) =

∣∣∣∣∣∑
b

κ̂κκV C · e(κκκ=000 b
ν α) exp[iκκκV C · rrr0(l=0

b )]

∣∣∣∣∣
2

(3.6)

and EL refers to the longitudinal polarization and is defined as

ET(κκκV C
ν ) =

∣∣∣∣∣∑
b

κ̂κκV C × e(κκκ=000 b
ν α) exp[iκκκV C · rrr0(l=0

b )]

∣∣∣∣∣
2

. (3.7)

In Eqs. (4.13) and (4.14), the b summations are over the atoms in the disordered supercell, rrr0(l=0
b )

refers to the equilibrium atomic position of atom b in the supercell, l labels the unit cells (l = 0

for the supercell), α labels the Cartesian coordinates, and κ̂κκV C is a unit vector. Explicit disorder is

included in the Gamma frequencies ω(κκκ=0
ν ) and the 3Na components of the eigenvectors, e(κκκ=000 b

ν α).

Physically, SL,T(κκκω) represents the frequency spectrum required to create a wavepacket with

a well-defined wave vector and polarization. [52, 73, 154] For a perfect lattice, the structure

factor peaks are delta functions centered at the mode frequencies, indicating that the modes are

pure plane-waves (i.e., phonons). A sampling of the structure factors for the LJ argon alloys are

plotted in Fig. 3.3 for wave vectors along the [100] and [111] directions in the N0 = 10 systems.

∗ Well-defined peaks at all wave vectors are due to the lattice structure of the disordered systems.

Typically, the structure factor for amorphous materials has well-defined peaks only for small

wave vector.[52, 73] With increasing disorder, the structure factor spreads in width, particularly

at high frequencies, which is an indication that the modes are not pure plane waves.

From Fig. 3.3, an effective dispersion curve (middle panels) can be extracted by locating the

peaks in the structure factors at neighboring VC wave vectors. The peaks in the structure factor

are larger than the VC predicted frequencies (plotted as solid lines in Fig. 3.3) by at most 5%.

Similar agreement is found with the disordered SW silicon lattice supercells.

Even though there is good agreement between the VC-predicted dispersion curves and the

peaks in the structure factors from Fig. 3.3, the effect of the width of the peaks is not clear. We

∗Due to the finite-size system, the delta function in Eq. (4.12) is broadened using a Lorentzian function with a
full-width at half maximum set to 20δω,avg, where δω,avg is the average frequency spacing. [48].
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will use the group velocities predicted by the VC dispersion for both LJ argon and SW silicon

in the VC-NMD and VC-ALD calculations for consistency and simplicity. The validity of this

group velocity choice will be discussed in Section 3.3.5.
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3.3.3 Lifetimes

3.3.3.1 From VC-NMD and Gamma-NMD

Once the group velocities are predicted using the VC dispersion, the mode lifetimes are required

to predict the thermal conductivity using Eq. (3.1). As an alternative to the VC-ALD approach

for predicting lifetimes, which is discussed in the next section, we first use the MD simulation-

based NMD method.[81, 99, 111, 155] In NMD, the atomic trajectories are first mapped onto the

vibrational mode coordinate q(κκκν ; t) and its time derivative q̇(κκκν ; t) by [19]

q(κκκν ; t) =

3,n,N∑
α,b,l

√
mb

N
uα(lb; t) e

∗(κκκ b
ν α) exp[iκκκ · r0( l0)] (3.8)

and

q̇(κκκν ; t) =

3,n,N∑
α,b,l

√
mb

N
u̇α(lb; t) e

∗(κκκ b
ν α) exp[iκκκ · r0( l0)]. (3.9)

Here, mb is the mass of the bth atom in the unit cell, uα is the α-component of the atomic

displacement from equilibrium, u̇α is the α-component of the atomic velocity, and t is time. The

total energy of each vibrational mode, E(κκκν ; t), is calculated from

E(κκκν ; t) =
ω(κκκν)

2

2
q(κκκν ; t)

∗ q(κκκν ; t) +
1

2
q̇(κκκν ; t)

∗ q̇(κκκν ; t) . (3.10)

The vibrational mode lifetime is predicted using

τ(κκκν) =

∫ t∗

0

< E(κκκν ; t)E(κκκν ; 0) >

< E(κκκν ; 0)E(κκκν ; 0) >
dt, (3.11)

where the upper integration limit t∗ is set to be much larger than the mode lifetime and the

brackets indicate an ensemble average.[155] The NMD calculations scale as (Na)
2.[12]

We perform the MD simulations using the fully disordered supercells and project onto the
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frequencies and eigenvectors from both the VC unit cell [ω(κκκν), e(κκκ b
ν α)] and the Gamma supercell

[ω(κκκ=0
ν ), e(κκκ=000 b

ν α)]. Previous studies of disordered supercells with the NMD method have used the

Gamma modes only to perform the projections. [62, 83, 84, 102, 151] The trajectories from the

MD simulations are also used in the GK method calculations (Section 3.4). The MD simulations

were ten times longer than the longest lifetime in the system, which was estimated from the VC-

ALD predicted lifetimes. For LJ argon and SW silicon, data was collected for 220 and 222 time

steps and the atomic trajectories were sampled every 28 and 24 time steps. Ensemble averaging of

the energy autocorrelations was performed using ten independent, initially-randomized velocity

distributions.

For the normal modes of the lattice supercell, where the energy autocorrelation follows an

exponential decay,[99, 111] Eq. (3.11) is exact, but this expression becomes an approximation

when using the VC normal modes to perform the mappings in Eqs. (3.8) and (4.19). Even for

larger disorder (c = 0.5), where the energy autocorrelations deviate from an exponential decay,

an effective lifetime can still be predicted using Eq. (3.11) (see Appendix A.3). The lifetimes

predicted using VC-NMD and Gamma-NMD are shown in Figs. 3.4(a)-3.4(d) for the LJ argon

crystal and all alloys at a temperature of 10 K. The range of frequencies for VC-NMD and

Gamma-NMD differ slightly due to differences in the DOS (see Fig. 3.2). For a small interval

of frequency, there is a wider range of predicted lifetimes for Gamma-NMD. This spread is

because there is no symmetry-averaging of the mode properties, which is possible for the VC by

considering the crystal lattice’s irreducible Brillouin zone.[130]

The lifetimes predicted by both VC-NMD and Gamma-NMD show a ω−2 scaling at low

frequency and a ω−4 scaling (for the alloys) and even faster for mid-range frequencies. The

ω−2 scaling is due to three-phonon scattering processes [21, 124]. The ω−4 scaling is due to

phonon-mass point defect scattering.[23, 35, 90, 91] A constant lifetime is observed at the highest

frequencies for both VC-NMD and Gamma-NMD except at c = 0.5 for VC-NMD. We are not

aware of any theoretical prediction of this high-frequency behavior.

The majority of the lifetimes predicted by both VC-NMD and Gamma-NMD are larger than
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the Ioffe-Regel (IR) limit, [75]

τIR =
2π

ω
. (3.12)

The physical interpretation of the IR limit is a mode that scatters in a time equal to its oscillation

period. Our results suggest that the IR limit is a good lower-limit for the lifetimes predicted by

VC-NMD and Gamma-NMD for LJ argon (Fig. 3.4) and VC-NMD for SW silicon [see Fig.

3.8(a) in Section 3.5].

Overall, good agreement is seen in the predicted lifetimes from VC-NMD and Gamma-NMD

in both magnitude and trends. The use of the VC normal modes is an approximation that be-

comes worse as the concentration is increased (see Appendix A.3), but our results suggest that

the effect is only pronounced at the highest frequencies and at high alloy concentrations. The

only approximation associated with Gamma-NMD is the use of the harmonic lattice dynamics-

predicted frequencies and eigenvectors to map the atomic trajectories from the fully anharmonic

MD simulations. This assumption has been shown to be valid for LJ argon below temperatures

of 40 K.[111] Based on the good agreement with Gamma-NMD, the VC-NMD lifetimes are

used along with the VC group velocities to predict thermal conductivity in Section 3.4. For

Gamma-NMD, there is no accepted way to predict the mode group velocities, so that the thermal

conductivity cannot be predicted using Eq. (3.1).
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Figure 3.4: Lifetimes predicted using VC-NMD and Gamma-NMD from MD simulations of (a)
perfect LJ argon and (b),(c),(d) mass-disordered LJ alloys forN0 = 10. ω−2 and ω−4 scalings are
observed at low to mid frequencies. For both VC-NMD and Gamma-NMD, most mode lifetimes
are greater than the Ioffe-Regel limit of 2π/ω. [75] While there is more scatter in the Gamma-
NMD data (see Section 3.3.3.1), the lifetime magnitudes and trends agree well, an important
consideration when comparing the VC-NMD and VC-ALD lifetimes in Fig. 3.5(a).
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3.3.3.2 From VC-ALD

Under the VC approximation, the ALD calculations[111] are performed on the conventional unit

cells of LJ argon and SW silicon with a single atomic mass based on the alloy concentration.

The ALD calculations scale as b4(N0)2.[12] Disorder is not included explicitly but is treated

using perturbation theory. Assuming phonon scattering mechanisms to operate independently,

the effective phonon lifetime can be found using the Matthiessen rule, [20]

1

τ(κκκν)
=

1

τp−p(
κκκ
ν)

+
1

τp−d(
κκκ
ν)
, (3.13)

where τp−p(κκκν) accounts for intrinsic phonon-phonon scattering and τp−d(κκκν) accounts for phonon-

defect scattering.

Phonon-phonon scattering in ALD is modeled by including three-phonon processes.[37, 39,

111] The present study is concerned with temperatures much less than the melting temperature

of either LJ argon [87] or SW silicon[131] so that we believe the effects of higher-order phonon

processes are negligible.[111, 156] We predict the phonon-phonon lifetimes using the method

described in Ref. 111, with all classical expressions for the populations to remain consistent

with the classical MD-based methods from Section 3.3.3.1.

Using perturbation theory, Tamura derived a general expression for phonon scattering by

mass point defects to second order that was applied to study isotopic germanium.[35] By consid-

ering the symmetry properties of the FCC lattices considered in this work, his expression reduces

to

1

τp−d(
κκκ
ν)

=
π

2
g2ω

2(κκκν)DOS[ω(κκκν)], (3.14)

where

gn =
∑
µ

cµ(1−mµ/m̄µ)n. (3.15)
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Here, cµ and mµ are the concentration and mass of the µ-th species and m̄µ is the average mass.

Bond disorder can be accounted for using a similar expression with an average atomic radius

or suitable scattering cross-section. [23, 90] For the binary LJ argon and SW silicon alloys

considered here, there is one atom type in the unit cell with µ = i, j, so that the alloying atom

labeled by mj
c can be considered to be an “isotope” of the atom labeled mi

1−c.

The lifetimes predicted by VC-ALD for LJ argon at a concentration of 0.05 are plotted in

Fig. 3.5(a). † Also plotted are the lifetimes for the perfect system and from the VC-NMD

predictions [Fig. 3.4(b)] at this concentration. At low frequencies, where the DOS is Debye-like

[D(ω) ∝ ω2, Fig. 3.2], τp−p(κκκν) scales as ω−2, a scaling also observed in the VC-NMD and

Gamma-NMD lifetimes. Under the Debye-approximation, the phonon scattering due to mass

point-defects is predicted to scale as ω−4 from Eq. (3.14). [35, 91] This scaling is observed

in the VC-NMD, Gamma-NMD, and VC-ALD predicted lifetimes in the mid-frequency range.

VC-ALD does not predict the frequency-independent lifetimes at high frequency for LJ argon

observed in VC-NMD and Gamma-NMD, and a significant number fall below the IR limit. The

lifetimes predicted by NMD and ALD for the perfect LJ argon crystal agree within 20% on a

mode-by-mode basis, and the resulting thermal conductivities agree within their uncertainties

(see Table 3.1).

Tamura applied his theory to predict the reduction of lifetimes in isotopic germanium, which

is weakly disordered (∼ 5% variation in the atomic masses). In the LJ alloys, the masses differ

by a factor of three. Large mass ratios were also considered in DFT VC-ALD studies of SiGe

(mass ratio of 2.6)[39], PbTeSe (2.6)[37], and MgSiSn (4.9)[38]. The importance of higher-

order interactions in the Tamura theory can be estimated by the disorder strength (i.e., gn for

n > 2).[35] For isotopically-disordered germanium, Tamura estimated that the higher-order

contributions were negligible (g2 = 5.87 × 10−4, g3 ∼ 10−7, and g4 ∼ 10−7).[35] For LJ argon

at a concentration of 0.15, g2 = 0.3018, g3 = −0.3250 and g4 = 0.4411. It is possible that the

†To perform the calculation of Eq. (3.14), it isnecessary to broaden the DOS using using a Lorentzian function.
[35] We use a value of 100δω,avg.
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neglect of the higher-order interactions in the Tamura theory is responsible for the discrepancy

of the lifetimes predicted by VC-NMD and Gamma-NMD versus VC-ALD at high frequencies.

Full evaluation of the higher-order interactions in the Tamura theory is of similar complexity to

anharmonic phonon interaction, [111, 124, 156] and is beyond the scope of this work.
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frequency modes with Dph < DHS . (c) Thermal conductivity frequency spectrum, which peaks
at high frequency, in contrast to SW silicon [(Fig. 3.8(c)].
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3.3.4 Diffusivities

We now use the AF theory to provide a lower limit for the contribution of a given vibrational

mode to thermal conductivity. While studies have been performed on alloying the amorphous

phase, [48] the AF theory has not been previously applied to disordered lattices. In the clas-

sical, harmonic limit for specific heat, a mode’s contribution to the thermal conductivity of is

determined by its diffusivity,

Dph,n(κκκν) = v2
g,n(κκκν) τ(

κκκ
ν) , (3.16)

such that from Eq. (3.1)

kph,n =
∑
κκκ

∑
ν

kB

V
Dph,n(κκκν) . (3.17)

The lower limit for phonon diffusivity is zero since the group velocities can be zero (e.g., optical

modes at the Brillouin zone center).

In the high-scatter limit,[2] the diffusivity of each mode is

DHS =
1

3
vsa, (3.18)

which leads to Eq. (3.3). The physical interpretation of Eq. (3.18) is that all vibrational modes

transport heat at the sound speed and have a mean free path of the lattice spacing. Based on the

IR limit, another possible lower-bound of diffusivity is

DIR =
2π

3

v2
s

ω
. (3.19)

To evaluate Eqs. (3.18) and (3.19), the sound speed is estimated by

vs =
1

3
vs,L +

2

3
vs,T , (3.20)

where vs,L and vs,T are the longitudinal and transverse sound speeds calculated from the elas-
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tic constants, [134] which agree within 20% with the branch-averaged sound speeds along the

high-symmetry dispersion directions [100],[110], and [111]. For LJ argon and SW silicon,

vs = 6.93 (LJ units) and 5, 790 m/s. The Cahill-Pohl model assumes Eq. (3.19) for the mode

diffusivities.[2] As seen in Fig. 3.5(b) for the LJ argon alloy at a concentration of 0.05, VC-NMD

and VC-ALD predict [from Eq. (3.16), using the x-component of group velocity], a significant

number of modes with Dph(
κκκ
ν) less than DHS , and DIR approaches DHS at high frequencies. For

both VC-NMD and VC-ALD, we approximate vvvg,n(κκκν) from the VC dispersion (Section 3.3.2) so

that any differences in diffusivity Dph will come from the predicted lifetimes.

In a disordered system, modes can transport heat by harmonic coupling in the AF theory

of diffusons.[47] While the high-scatter model assumes a mode-independent diffusivity, the AF

theory is capable of predicting mode-specific thermal diffusivities DAF . [48, 52, 157] Since the

AF theory is harmonic, the diffusivities typically diverge as the frequency approaches zero be-

cause these vibrations are long-wavelength plane waves that are weakly scattered by the disorder.

[94, 95] The mode-specific diffusivities, DAF , of an LJ argon amorphous phase (see Section 4.3)

‡ are plotted in Fig. 3.6 along with DHS and DIR. Except at the highest frequencies, the diffusiv-

ity of all amorphous modes can be approximated using the mode-independent diffusivity DHS .

The lower-limit DIR is clearly an overprediction for the amorphous mode diffusivities. Also

plotted in Fig. 3.6 are diffusivities predicted from the AF theory for the explicitly-disordered LJ

argon lattice supercell alloy at a concentration of 0.5. As expected, the AF theory predictions

diverge at low frequency. § The diffusivity of all modes are larger than DHS except at the high-

est frequencies, where they tend to zero as with the amorphous phase. This result supports the

hypothesis that the lower-bound of the VC predicted phonon diffusivity should be DHS (and not

zero as for a crystal), which is further explored in Sections 3.4 and 3.5.

‡For a finite system, the AF theory requires a frequency broadening to predict the mode-specific thermal diffu-
sivities. [47] We broaden using a Lorentzian function with a width δω,avg .
§For the LJ alloys with c ≤ 0.15, the predicted kAF is strongly system-size dependent, indicating this diverging

behavior. For LJ argon alloys at c = 0.5, the divergence with system size is small for the range of system size
studied (N0 = 4 toN0 = 12). ForN0 = 12, kAF /kGK = 0.93 because the finite system-size limits the diffusivities
of the lowest frequencies.
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3.3.5 Discussion

In this section, in anticipation of the thermal conductivity predictions in Section 3.4, we discuss

two possible sources of error in the VC-predicted mode properties. To start, we note that for

disordered systems, it is generally only possible to assign a unique lifetime and group velocity to

vibrational modes in the low-frequency, propagating limit. [52, 158] The mode diffusivity is the

fundamental transport property. [47, 48, 52]

We believe that the VC-predicted group velocities, particularly for vg,n(κκκν) ≈ 0, are an under-

prediction of the velocity scale required to evaluate Eq. (3.16). This statement is supported by

the AF-theory diffusivities plotted in Fig. 3.6, which are finite for the majority of the frequency

range the LJ alloy at a concentration of 0.5. While the diffusivity from Eq. (3.16) can be zero

because of the VC predicted group velocities, this result is not consistent with the AF theory

predictions.

The VC-NMD and Gamma-NMD predicted lifetimes are generally larger than the IR limit

for LJ argon and its alloys (see Fig. 3.4). The constant lifetime observed at the highest frequen-

cies for both VC-NMD (except at c = 0.5) and Gamma-NMD is consistent with the plateau

of mode diffusivity at high frequency predicted for a model disordered lattice, which was ex-

plained by a plateau in the vibrational mode lifetimes. [93] Recently, a study of model disor-

dered lattices predicted the mid-frequency minimum and the high-frequency plateau of the mode

diffusivities.[152] Similar behavior of the mode diffusivities has been observed in model jammed

systems.[95, 158] VC-ALD predicts essentially monotonically decreasing lifetimes with increas-

ing frequency for the LJ argon alloys [Fig. 3.5(a)] with many falling below the IR limit. Because

VC-NMD and VC-ALD use the same values for vg,n(κκκν), the mode diffusivities will therefore

be underpredicted for VC-ALD compared to VC-NMD for the LJ argon alloys because of the

lifetime underprediction.
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3.4 Thermal Conductivity Prediction

The thermal conductivities of the LJ systems can now be predicted from Eq. (3.1) using the

vibrational mode properties from VC-NMD and VC-ALD. Given the discussion regarding the

VC-predicted mode properties in Section 3.3.5, we also predict thermal conductivity using the

equilibrium MD-based GK method, which is a top-down method that does not make any ap-

proximations about the nature of the vibrational modes. Thermal conductivities predicted by

the GK method naturally capture all scattering mechanisms. [77, 83, 85] The heat current was

computed every ten time steps from the same atomic trajectories (positions and velocities) used

for the VC-NMD and Gamma-NMD calculations. The thermal conductivity is determined from

the maximum of the integral of the heat current autocorrelation function.

The thermal conductivities predicted by VC-NMD, VC-ALD, and GK are system size-dependent

[i.e., k = k(N0)] for all lattices and methods except perfect LJ argon from GK.[81] To predict a

bulk thermal conductivity, kbulk, a linear extrapolation procedure is used, whereby

k(N0)

kbulk
= 1− c0

N0

, (3.21)

where c0 is a constant.[12, 29, 36] The thermal conductivity is predicted for varying system sizes

and the bulk thermal conductivity is obtained by fitting Eq. (A.27) to the data. For VC-NMD

and VC-ALD, the validity of Eq. (A.27) requires that the low-frequency modes be dominated

by phonon-phonon scattering (i.e., τ ∝ ω−2) and follow the Debye approximation with respect

to the group velocity and DOS. [29, 36] For the LJ argon alloys, this requirement is satisfied for

modest system sizes (forN0 = 6 to 12) so that both VC-NMD and VC-ALD thermal conductivity

predictions can be extrapolated to a bulk value.

Bulk thermal conductivity predictions for the LJ argon alloys using VC-NMD, VC-ALD, and

GK are tabulated in Table 3.1 and plotted in Fig. 3.7. Also plotted in Fig. 3.7 is the high-scatter

thermal conductivity prediction kHS [Eq. (3.3)]. The thermal conductivity predicted for the LJ
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amorphous phase by GK is 0.17 W/m-K, which is in good agreement with kHS (0.16 W/m-

K) for the perfect crystal. The predicted thermal conductivities of the LJ argon alloys at high

concentration are a factor of two to three larger than kHS . While agreement between the three

methods is found for the perfect crystal, VC-NMD and VC-ALD underpredict the alloy thermal

conductivities compared to GK. The underprediction is modest for VC-NMD, where kNMD is

80% of kGK or greater for all concentrations. The VC-ALD method significantly underpredicts

the thermal conductivity of the LJ argon alloys. The largest deviation is at a concentration of

0.05, where kV C−ALD is 56% of kGK .

In Section 3.3.4, we argued for the existence of a minimum mode diffusivity, DHS [Eq.

(3.18)]. As shown in Fig. 3.5(b), the diffusivities of many high-frequency modes in the LJ al-

loys, predicted by both VC-NMD and VC-ALD, fall below this limit. Based on this observation,

we propose that any diffusivity below the limit be set toDHS for thermal conductivity prediction.

The results of this adjustment, referred to as VC-NMD* and VC-ALD*, are plotted in Fig. 3.7

and included in Table 3.1. The adjusted thermal conductivities predicted by VC-NMD∗ are now

within 10% of the GK value for all concentrations, which is within the prediction uncertainties.

Combined with DHS , we believe that the VC-NMD predicted diffusivities are good represen-

tations for the explicitly-disordered modes present in the MD simulations. Another possible

adjustment, DIR [Eq. (3.19)], results in a thermal conductivity of 0.94 ± 0.09 W/m-K for the

LJ argon alloy at a concentration of 0.05, well above the value predicted by GK. We also note

that the thermal conductivity of the amorphous phase is well-modeled by a mode-independent

diffusivity DHS , while DIR overpredicts for all modes in the amorphous phase (see Fig. 3.6).

Thus, we believe that DHS is the more appropriate high-scatter limit.

By applying the high-scatter limit adjustment VC-ALD∗, the thermal conductivities are brought

into marginally better agreement with the GK values, worst for a concentration of 0.05, where

kV C−ALD∗ is 65% of kGK . As seen in Fig. 3.5(b), the VC-ALD method fails to accurately predict

the high-frequency mode diffusivities for LJ argon alloys. Since the group velocities are the same

for VC-NMD and VC-ALD, the underprediction of the high-frequency diffusivities is due to the
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Figure 3.7: Thermal conductivity predictions for LJ argon and alloys at T=10 K using the VC-
NMD, VC-ALD, and GK methods. The high-scatter thermal conductivity prediction kHS [Eq.
(3.3)] and the high-scatter adjusted VC-NMD∗ and VC-ALD∗ are also plotted.

underprediction of the high-frequency mode lifetimes from VC-ALD compared to VC-NMD.

We know that the VC-NMD predicted lifetimes are more accurate values due to their agreement

with Gamma-NMD [Fig. 3.4].

The thermal conductivity spectrum, defined as the contribution to thermal conductivity of

modes at a given frequency, is plotted in Fig. 3.5(c) for VC-NMD and VC-ALD for the perfect

crystal and the alloy with a concentration of 0.05. The thermal conductivity of LJ argon and

its alloys has important contributions from high-frequency modes. VC-ALD underpredicts the

high-frequency diffusivities compared to VC-NMD, which leads to an underprediction of the

high-frequency thermal conductivity spectrum compared to VC-NMD. This result can be traced

back to an underprediction of the high-frequency lifetimes compared to VC-NMD and Gamma-

NMD [Fig. 3.5(a)].
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Table 3.1: Thermal conductivity predictions using the VC-NMD, VC-ALD, and GK methods.
For LJ argon alloys, the bulk extrapolation is used for all three methods. For SW silicon al-
loys, only VC-ALD and GK can be used to extrapolate a bulk thermal conductivity (see Section
3.4). For VC-NMD and GK, the uncertainties are estimated by omitting independent simulations
from the ensemble averaging (see Section 4.3). For VC-ALD, the uncertainties are estimated by
omitting extrapolation points used for Eq. (A.27).
c GK VC-NMD VC-ALD VC-NMD∗ VC-ALD∗

LJ
0.00 3.3 ± 0.1 3.3 ± 0.1 3.4 ± 0.1
0.05 0.80 ± 0.07 0.76 ± 0.07 0.45 ± 0.02 0.80 ± 0.1 0.52 ± 0.05
0.15 0.46 ± 0.07 0.36 ± 0.04 0.24 ± 0.01 0.45 ± 0.05 0.33 ± 0.07
0.50 0.38 ± 0.07 0.31 ± 0.04 0.23 ± 0.01 0.35 ± 0.05 0.31 ± 0.07
SW
0.00 520 ± 30 480 ± 20
0.05 20 ± 2 24 ± 2 24 ± 2
0.15 9.9 ± 0.9 12 ± 1 12 ± 1
0.50 9.3 ± 0.9 11 ± 1 11 ± 1

68



3.5 SW silicon

The failure of VC-ALD to predict the thermal conductivities of the LJ alloys is due to an under-

prediction of the high-frequency mode lifetimes, which make an important contribution to the

thermal conductivity [see Sections 3.3.4 and 3.4, Figs. 3.5(a) and 3.5(c)]. To provide a contrast,

we now predict the vibrational mode properties and thermal conductivity for bulk and alloyed

SW silicon, where it is known that low-frequency modes dominate the thermal conductivity.

[123, 147] The lifetimes for the perfect crystal and an alloy with a concentration of 0.5 predicted

by VC-NMD and VC-ALD are plotted in Fig. 3.8(a). The VC-NMD predicted lifetimes are

generally larger than the IR limit for SW silicon alloys, similar to the VC-NMD predictions for

the LJ argon alloys (Fig. 3.4). Unlike the LJ argon alloys, the VC-NMD and VC-ALD predicted

lifetimes agree over most of the frequency spectrum, except at the highest frequencies, where

VC-ALD underpredicts VC-NMD and falls below the IR limit. The high-frequency plateau of

the VC-NMD predicted lifetimes for LJ argon (Fig. 3.4) is not seen for SW silicon. As seen in

Figs. 3.5(b) and 3.8(b), VC-NMD and VC-ALD both predict a significant number of modes with

Dph(
κκκ
ν) less than DHS for both the LJ argon and SW silicon alloys.

The thermal conductivity spectra for bulk SW silicon and an alloy with a concentration of 0.5

are plotted in Fig. 3.8(c). For bulk and the alloy, the thermal conductivity is dominated by low-

frequency modes, so that large system-sizes are needed to satisfy the extrapolation requirements

and only GK and VC-ALD can be used to predict a bulk value from Eq. (A.27). While a previous

study found that it was necessary to use cell sizes of N0 = 60 for Tersoff silicon alloys,[84] we

find that Eq. (A.27) is valid for SW silicon and 38 ≤ N0 ≤ 42. This system-size requirement

highlights the efficiency of the VC-ALD method compared to VC-NMD, which is necessary

when computationally-expensive DFT calculations are used. [29, 30, 37, 39, 92, 159] The bulk

thermal conductivity predictions for VC-ALD and GK are shown in Table 3.1 and plotted in Fig.

3.9. The alloy thermal conductivities predicted by VC-ALD are 20% larger than those from GK,

in contrast to VC-ALD underpredicting for LJ argon alloys. This overprediction by VC-ALD
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compared to GK is close to the overprediction (15%) of VC-ALD using DFT calculations of

SiGe alloys compared to experiment without including disorder explicitly.[39]

The predicted thermal conductivities for the SW silicon alloys at all concentrations are over

an order of magnitude larger than the high-scatter prediction, kHS . Because the thermal transport

in SW silicon is dominated by low-frequency modes, the high-scatter adjustment VC-ALD∗ is

within one percent compared to the unadjusted VC-ALD. While higher-order interactions in the

Tamura theory may be responsible for the discrepancy of the lifetimes predicted by VC-NMD

and VC-ALD in SW silicon at the highest frequencies [Fig. 3.8(a)], this effect is not important

to the overall thermal transport. VC-ALD predicts accurate alloy thermal conductivities for SW

silicon because it is a low-frequency dominated material, which is the frequency range where the

standard application of the Tamura theory is valid.[35]
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N0 = 8, and c = 0.05). (b) Mode diffusivities compared to the high-scatter limit, DHS [Eq.
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3.6 Summary

In this study, we investigated the use of the VC approximation for predicting the vibrational

mode properties and thermal conductivity of LJ argon and SW silicon alloys by a detailed com-

parison of the VC-NMD, VC-ALD, and GK methods. By using computationally-inexpensive

empirical potentials we self-consistently studied the effects of disorder both explicitly (Sections

3.3.1, 3.3.2, 3.3.3.1, 3.3.4, and 3.5) and as a perturbation (Sections 3.3.3.2 and 3.5). By spanning

a range of disorder, the limits of the perturbative models were examined. A breakdown of the

VC-ALD method was identified for LJ argon alloys by a comparison with the VC-NMD method

in Section 3.3.3.2 and a correction was suggested in Section 3.4. The mode properties and ther-

mal conductivity of the SW silicon alloys were predicted in Section 3.5 and provided a contrast

to the LJ argon alloys, which have a different thermal conductivity spectrum.

The results for the SW silicon and LJ argon alloys suggest that modeling of thermal transport

in ordered and disordered lattices can be separated into two broad groups: low-frequency dom-

inated and full-spectrum materials. Materials dominated by low-frequency modes tend to have

high thermal conductivities that are significantly larger than the high-scatter limit [Eq. (3.3)],

which is due to the large group velocities and long lifetimes of low-frequency modes.[30, 34, 39,

139, 141, 142, 143, 160] These low-frequency modes closely follow the scalings predicted by

the perturbative VC-ALD models, which are valid at low-frequencies.

LJ argon is a material whose thermal transport has significant contribution from high-frequency

modes, even for the bulk [see Fig. 3.5 (c)]. This high-frequency range is where we predict that the

perturbative Tamura theory will have non-negligible contributions from higher-order interactions

(see Section 3.3.3.2). While the higher-order interactions in the Tamura theory are also predicted

to be non-negligible for SW silicon, this does not affect the thermal conductivity predictions

significantly because high-frequency modes are not important to thermal transport. The negli-

gible contributions of high-frequency modes is demonstrated by experimental measurements of

the thermal conductivity of SiGe alloys, which exceed the high-scatter limit by more than an
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order of magnitude at room temperature for all compositions. [2, 142, 143, 160] Experimentally-

accurate theoretical predictions[39] also demonstrate that high-frequency modes are unimportant

to thermal transport, although they do serve as important scattering channels. [28]

The VC-ALD method provides a computationally inexpensive framework, which is essential

when using ab initio methods for predicting thermal conductivity. [28, 29, 30, 31, 32, 36, 37, 38,

39] Based on our results, we believe that the Tamura theory breaks down for mode diffusivities

predicted to be below the high-scatter limit, DHS [Eq. (3.18)]. This breakdown may be true for

the high-frequency modes of any disordered lattice[93] and the high-scatter limit DHS should

be considered whenever the perturbative VC-ALD method is used. Although the high-scatter

limit of diffusivity is usually interpreted as a minimum mean free path, [1, 2, 72, 93] we find that

this concept is not necessary for interpreting the results of this work. In a disordered lattice, the

fundamental quantities are the mode lifetime and diffusivity[47, 73, 75, 93, 95, 152, 158] and the

VC predicted group velocity is an approximation.
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Chapter 4

Thermal Conductivity Accumulation in

Amorphous Materials

We predict the properties of the propagating and non-propagating vibrational modes in amor-

phous silica (a-SiO2) and amorphous silicon (a-Si) and from them, the thermal conductivity

accumulation functions. The calculations are performed using molecular dynamics simulations,

lattice dynamics calculations, and theoretical models. For a-SiO2, the propagating modes con-

tribute negligibly to thermal conductivity (6%), in agreement with the thermal conductivity ac-

cumulation measured by Regner et al. [Nat. Commun. 4, 1640 (2013)]. For a-Si, propagating

modes with mean free paths up to 1 µm contribute 40% of the total thermal conductivity. The

predicted contribution to thermal conductivity from non-propagating modes and the total thermal

conductivity for a-Si are in agreement with Regner et al.’s measurements. The accumulation in

the measurements, however, takes place over a narrower band of mean free paths (100 nm - 1

µm) than that predicted (10 nm - 1 µm).
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4.1 Introduction

The vibrational modes in disordered solids (e.g., alloys, amorphous materials) can be classified

as propagons (propagating and de-localized, i.e., phonon-like), diffusons (non-propagating and

de-localized), and locons (non-propagating and localized). [47, 73] Diffusons contribute to ther-

mal conductivity by harmonic coupling with other modes due to the disorder. Locons do not

contribute significantly to thermal transport in three-dimensional systems. [161]

Experimental measurements, estimates based on experiments, and modeling predictions have

demonstrated that propagating modes contribute significantly to the thermal conductivity of

amorphous silicon (a-Si) [15, 48, 51, 52, 54, 55, 62] and amorphous silicon nitride, [74] but

not to that of amorphous silica (a-SiO2). [1, 2, 15, 49, 50, 51, 53, 70, 71] Notably, using broad-

band frequency domain thermoreflectance, Regner et al. measured how the thermal conductivity

of a-SiO2 and a-Si thin films at a temperature of 300 K change with the thermal penetration

depth associated with the heating laser, which identifies the depth normal to the surface at which

the temperature amplitude is 1/e of its surface amplitude.[15] Adopting the convention of Koh

and Cahill,[162] they interpret the measured thermal conductivity at a given thermal penetration

depth to be representative of the phonons with mean free paths (MFP) less than that value, al-

lowing for the construction of the thermal conductivity accumulation function.[163, 164, 165]

For a-SiO2, the thermal conductivity of a 1000 nm thick film did not vary for thermal penetration

depths between 100 and 1000 nm. This result suggests that any propagating modes that con-

tribute to thermal conductivity have MFPs below 100 nm. For a-Si, they find that the thermal

conductivities of films with thicknesses of 500 and 2000 nm vary by 40% between thermal pen-

etration depths of 100 and 1000 nm. This result suggests that propagating modes with MFPs in

this range contribute significantly to thermal conductivity.

To interpret the results of Regner et al. requires knowledge of the MFPs of the propagating

modes and the contribution to thermal conductivity from the non-propagating modes. Experi-

mentally, inelastic neutron scattering can be used to measure phonon lifetimes (and from these,
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MFPs), but this technique is suited to single-crystal samples. [166] Traditionally, empirical ex-

pressions and simple models have been the only means to estimate MFPs in amorphous materials,

[1, 2, 49, 68, 69] while the Allen-Feldman (AF) theory can be used to model the non-propagating

modes.[47, 48]

Predicting the vibrational MFPs in an amorphous solid requires the group velocities and

lifetimes of the low-frequency propagating modes. [1, 48, 49, 50, 51, 52, 53, 54, 55] It is typically

assumed that the group velocity of these modes is equal to the sound speed.[1, 2, 48, 49, 50, 51,

52, 68, 69] To evaluate the expressions and models for the low-frequency mode lifetimes requires

knowledge of how the lifetimes scale with frequency. [1, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]

The scaling for a-SiO2 has only recently been measured, with evidence of ω−2, ω−4, and a second

ω−2 regime as the mode frequency, ω, increases from 3.14 to 6.28 ×1012 rads/s. [58, 59, 60, 61]

For a-Si, the scaling is not well understood, [48, 51, 52, 54, 55, 56, 57, 62] with temperature-

dependent[54, 56, 63] and film thickness-varying measurements [46, 51, 54, 55, 56, 64, 65, 66,

67] suggesting both ω−2 and ω−4 scalings. [48, 52]

The objective of this work is to investigate the propagating and non-propagating contributions

to the thermal conductivity of a-SiO2 and a-Si by predicting the MFPs and thermal conductivity

accumulation functions for realistic models and comparing the predictions to experimental mea-

surements. The paper is organized as follows. The theoretical formulation and modeling frame-

work are discussed in Section 4.2. The sample preparation for the a-SiO2 and a-Si bulk models

and the computational details are discussed in Section 4.3. In Sections 4.4.1, 4.4.2, and 4.4.3,

harmonic lattice dynamics calculations are performed to predict the vibrational density of states,

the plane-wave character of the vibrational modes, and the group velocity of the low-frequency

propagating modes (i.e., the sound speed). The vibrational mode lifetimes are predicted using the

molecular dynamics-based normal mode decomposition (NMD) method in Section 4.4.4. Using

the sound speeds and lifetimes, the vibrational mode diffusivities (i.e., the product of the square

of the group velocity and the lifetime) are calculated and compared with predictions from the AF

theory in Section 4.4.5. Using this comparison, a cutoff frequency between propagating and non-
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propagating modes is specified. The properties of the propagating and non-propagating modes

are then used to predict the total thermal conductivity in Section 4.5.1. The thermal conductivity

accumulation functions are predicted in Section 4.5.2, where the results are compared with the

experimental results.

4.2 Theoretical Formulation of Vibrational Thermal Conduc-

tivity

We calculate the total vibrational thermal conductivity, kvib, of an amorphous solid from

kvib = kpr + kAF , (4.1)

where kpr is the contribution from propagating modes [19, 20, 130] and kAF is the contribution

from non-propagating modes predicted by the AF theory.[48] Mode-level properties obtained

from molecular dynamics (MD) simulations and lattice dynamics calculations will be used as

inputs. Equation (4.1) has been used in previous studies of amorphous materials, [1, 48, 49, 50,

51, 52, 53, 54, 55] leading to predictions that while kpr is a negligible fraction of kvib for a-SiO2

(< 10%), [1, 49, 50, 53] it is non-negligible for a-Si (20− 80%). [48, 51, 52, 54, 55, 62]

The propagating contribution is modeled as [48, 52]

kpr =
1

V

∫ ωcut

0

DOS(ω)C(ω)Dpr(ω)dω, (4.2)

where V is the system volume, ωcut is the maximum frequency of propagating modes, DOS(ω)

is the vibrational density of states (DOS),C(ω) is the mode specific heat, andDpr(ω) is the mode

diffusivity. When using mode properties obtained from calculations on finite-sized systems, it is

common to write Eq. (4.2) as a summation over the available modes. [48, 52] We choose the

integral form because the required use of finite-sized simulation cells limits the lowest frequency
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modes that can be accessed. An extrapolation must be made to the zero-frequency limit that is

more easily handled with the integral. [48, 50, 51, 52, 53, 54, 55] Equation (4.2) is obtained by

using the single-mode relaxation time approximation to solve the Boltzmann transport equation

for a phonon gas. [20] In the derivation of Eq. (4.2), the system is assumed to be isotropic (valid

for an amorphous material) and have a single polarization, making the mode properties only a

function of frequency. The choice of a single polarization (i.e., an averaging of the transverse

and longitudinal branches) does not significantly change the results predicted in this work or that

of others. [48, 51, 52, 53, 54, 55] We will evaluate Eq. (4.2) under the Debye approximation,

which assumes isotropic and linear dispersion such that the DOS is

DOS(ω) =
3V ω2

2π2v3
s

, (4.3)

where vs is an appropriate sound speed.[130]

The specific heat in the classical, harmonic limit is kB, where kB is the Boltzmann constant.

[86] Taking this classical limit allows for a direct comparison between the lattice dynamics-

based predictions and those from the classical MD simulations. The harmonic approximation

has been found to be valid for systems ranging from Lennard-Jones (LJ) argon,[81] to crystalline

Stillinger-Weber silicon and carbon nanotubes[155] at temperatures below half the melting tem-

perature. The full quantum expression for the specific heat is [20]

C(ω) = kB

[
~ω/2kBT

sinh(~ω/2kBT )

]2

, (4.4)

where ~ is the Planck constant.[130] The quantum specific heat will be used for the non-propagating

modes to compare the kAF predictions to experimental measurements in Sections 4.5.1 and 4.5.2.

The diffusivity of the propagating modes is

Dpr(ω) =
1

3
v2
sτ(ω), (4.5)
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where τ(ω) is the frequency-dependent mode lifetime.[20] An equivalent physical picture in

terms of a scattering length is

Dpr(ω) =
1

3
vsΛ(ω), (4.6)

where Λ(ω) is the MFP, defined as

Λ(ω) = vsτ(ω). (4.7)

The lifetimes will be modeled using

τ(ω) = Bω−n. (4.8)

By using a constant sound speed, the lifetime and diffusivity frequency scalings will be the same.

For amorphous materials, the scaling exponent n has been found experimentally and numerically

to be between two and four. [43, 48, 52, 54, 55, 58, 59, 60, 61, 62, 75, 95, 158, 167, 168, 169, 170,

171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181] A value of two corresponds to Umklapp

scattering,[21] while a value of four corresponds to Rayleigh scattering from point defects.[23]

Combined with Eq. (4.3), choosing n ≤ 2 ensures that the thermal conductivity evaluated from

Eq. (4.2) is finite. Choosing n > 2 causes the thermal conductivity to diverge, which can be

fixed using additional anharmonic [48, 52] or boundary scattering terms. [51, 54, 55]

The AF diffuson contribution to thermal conductivity is [48, 52]

kAF =
1

V

∑
i,ωi>ωcut

C(ωi)DAF (ωi), (4.9)

where ωi is the frequency of the ith diffuson mode, C(ωi) is the diffuson specific heat, and

DAF (ωi) is the diffuson diffusivity. Equation (4.9) is written as a sum because there are enough
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high-frequency diffusons in the finite-size systems studied here to ensure a converged value.[48,

52] The AF diffusivities are calculated from[47]

DAF (ωi) =
πV 2

~2ω2
i

∑
j 6=i

|Sij|2δ(ωi − ωj), (4.10)

where δ is the Dirac delta function.∗ The heat current operator Sij , which measures the thermal

coupling between vibrational modes i and j based on their frequencies and spatial overlap of

eigenvectors, can be calculated from harmonic lattice dynamics theory. [47, 48, 52] For Eq.

(4.10), Sij is directionally averaged because amorphous materials are isotropic.

4.3 Calculation Details

4.3.1 Sample Preparation

The three smallest a-SiO2 samples are the same as those used in Ref. 82 and contain 288,

576, and 972 atoms at a density of 2350 kg/m3. The atomic interactions are modeled using the

modified Beest-Kramer-van Santen (BKS) potential [182, 183] from Ref. 82, except that the

24-6 LJ potential[184] is changed to a 12-6, which has a negligible effect on the predictions. The

LJ potentials use a cutoff of 8.5 Å and the Buckingham potentials use a cutoff of 10 Å. The

electrostatic interactions are handled using the Wolf direct summation method with a damping

parameter of 0.223Å−1 and a cutoff of 12 Å.[185] Larger systems of 2880, 4608, and 34562

atoms were created by tiling the smaller samples, melting at a temperature of 10000 K, and

quenching instantaneously to a temperature of 300 K at constant volume. The melt-quench

procedure and subsequent MD simulations were performed using the MD package LAMMPS

and a time step of 0.905 fs.[136] The resulting a-SiO2 structure is built from a network of rigidly-

bonded SiO4 tetrahedral sub-units that are weakly bonded via shared oxygen atoms, as shown in

∗The summation in Eq. (4.10) is performed over all modes j 6= i including modes with ω < ωcut.
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Figure 4.1: (a) Small sample of an a-SiO2 structure created from a melt-quench technique
showing the Si-O tetrahedral bond network. Bond lengths range between 1.6 and 1.8 Å. (b)
Small sample of an a-Si structure created by the modified WWW algorithm. Bond lengths range
between 2.3 and 2.7 Å. Visualizations using the VESTA package with blue silicon atoms and
red oxygen atoms.[146]

Fig. 4.1 (a). The 34562 atom sample has a supercell side length of 8.05 nm.

For a-Si, we use samples with 216, 1000, 4096, and 100000 atoms, which is the largest to our

knowledge, generated from the modified Wooten-Winer-Weaire (WWW) algorithm from Ref.

186. The resulting a-Si structure is a rigid, predominantly tetrahedrally-bonded network[186]

and is shown in Fig. 4.1 (b). A larger sample was created from the 100000 atom sample by tiling

it twice in all directions to create an 800000 atom sample with a side length of 24.81 nm. All a-Si

structures have a density of 2330 kg/m3, equivalent to the perfect crystal with a lattice constant

of 5.43 Å. The Stillinger-Weber (SW) potential is used to model the atomic interactions.[131]

The MD simulations are performed using LAMMPS with a time step of 0.5 fs.

Amorphous materials may have many different atomic configurations with nearly equivalent

potential energies, leading to potential metastability during MD simulations. [52, 62, 187, 188,

189] This meta-stability can cause errors when predicting vibrational lifetimes using NMD (see

Section 4.4.4). To remove metastability, all a-SiO2 and a-Si samples were annealed at a temper-

ature of 1100 K for 10 ns.[52, 62] The removal of meta-stability is demonstrated by a decrease

and plateau of the sample’s potential energy during the annealing.
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4.3.2 Simulation Details

Before data collection, all MD simulations are first equilibrated in an NV T (constant number

of atoms, volume, and temperature) ensemble for 106 time steps at a temperature of 300 K.

Data are then collected from simulations in the NV E (constant number of atoms, volume, and

total energy) ensemble for 221 time steps, where the atomic trajectories are sampled every 28

time steps. Ten MD simulations with different initial conditions are run and the predictions are

ensemble-averaged.

The Green-Kubo (GK) method is used to predict a top-down thermal conductivity kGK [i.e.,

without using Eq. (4.1)] [86] using the first-avalanche method to specify the converged value of

the integral of the heat current autocorrelation function (Section 4.5.1). [190] For system sizes of

4608 (a-SiO2, supercell side length of 4.026 nm) and 4096 (a-Si, supercell side length of 4.344

nm) atoms, the trajectories from the MD simulations are also used to predict the vibrational mode

lifetimes using the NMD method (Section 4.4.4).

For an amorphous supercell, the only allowed wave vector is the Gamma point (i.e., κκκ = 0),

where κκκ is the wavevector and there are 3Na polarization branches labeled by ν, where Na is the

number of atoms. Calculation of the vibrational modes at the Gamma point requires the eigen-

value solution of a dynamical matrix of size (3Na)
2 that scales as [(3Na)

2]3, limiting the system

sizes that can be considered to 4608 (a-SiO2) and 4096 (a-Si) atoms. The eigenvalue solution is

also required to predict the vibrational DOS (Section 4.4.1) and structure factors (Section 4.4.2),

and to perform the NMD calculations (Section 4.4.4) and the AF calculations (Section 4.4.5).

The frequencies and eigenvectors were computed using harmonic lattice dynamics calculations

with GULP.[134] The calculation of the AF thermal diffusivities [Eq. (4.10)] is performed using

GULP and a Lorentzian broadening of 14δωavg for a-SiO2 and 5δωavg for a-Si, where δωavg is

the average mode frequency spacing [δωavg = 1.8× 1010 rads/s (a-SiO2) and 1.0× 1010 rads/s

(a-Si)]. [48, 52] Varying the broadening by 10% around these values does not change kAF within

its uncertainty (see Section 4.5.1).
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4.4 Vibrational Mode Properties

4.4.1 Density of States

The vibrational DOS is computed from

DOS(ω) =
∑
i

δ(ωi − ω), (4.11)

where a unit step function of width 100δωavg is used to broaden δ(ωi − ω). The results for a-

SiO2 and a-Si are plotted in Fig. 4.2. The DOS for a-Si is similar to that of crystalline silicon,

[73, 102] with peaks at mid- and high-frequencies. The DOS for a-SiO2 is constant over most of

the frequency-range, with a gap that separates the high-frequency Si-O interactions.[82] There is

a clear ω−2 scaling for both a-Si and a-SiO2 at the lowest frequencies. The onset of this scaling

occurs at a higher frequency for a-Si (∼ 1.5 ×1013 rads/s) than a-SiO2 (∼ 4.5 ×1012 rads/s).

This low-frequency scaling is predicted by the Debye model [Eq. (4.3)] and suggests that these

modes may be propagating (i.e., phonon-like).
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Figure 4.2: Vibrational DOS of a-SiO2 and a-Si plotted on a log-log scale. Both models show an
ω2 scaling at low frequency. The DOS for a-Si has two peaks similar to the DOS of the crystalline
phase.[121] The DOS for a-SiO2 is flat over most of the spectrum, with a high frequency gap
that separates the Si-O interactions.[82]

4.4.2 Structure Factor

Calculating the structure factors of the supercell Gamma modes is a method to test for their

propagating (i.e., plane-wave) character at a particular wavevector and polarization. This ap-

proach has been previously used to predict effective dispersion curves of disordered and amor-

phous materials experimentally [45, 53, 59, 61, 154, 168, 171, 172, 191, 192] and numerically.

[48, 52, 73, 75, 152, 153, 169, 170, 173, 175, 177, 178, 180, 193, 194, 195, 196, 197] The

structure factor at a wavevector κκκ is defined as[73]

SL,T(κκκω) =
∑
ν

EL,T(κκκν) δ(ω − ω(κκκ=0
ν )), (4.12)
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where the summation is over the Gamma modes, ET refers to the transverse polarization and is

defined as

EL(κκκν) =

∣∣∣∣∣∑
b

κ̂κκ · e(κκκ=000 b
ν α) exp[iκκκ · rrr0(l=0

b )]

∣∣∣∣∣
2

(4.13)

and EL refers to the longitudinal polarization and is defined as

ET(κκκν) =

∣∣∣∣∣∑
b

κ̂κκ× e(κκκ=000 b
ν α) exp[iκκκ · rrr0(l=0

b )]

∣∣∣∣∣
2

. (4.14)

In Eqs. (4.13) and (4.14), the b summations are over the atoms in the disordered supercell,

rrr0(l=0
b ) refers to the equilibrium atomic position of atom b, l labels the unit cells (l = 0 for the

supercell), α labels the Cartesian coordinates, and κ̂κκ is a unit vector. The vibrational mode shape

is contained in the 3Na components of its eigenvector, e(κκκ=000 b
ν α). [19]

The transverse and longitudinal structure factors are plotted in Figs. 4.3(a) and 4.3(b) for

a-SiO2 and a-Si for wavevectors along the [100] direction of the supercells. Because amorphous

structures are isotropic, the structure factors are direction-independent. Mode frequencies, ω0(κκκ),

and linewidths, Γ(κκκ), can be predicted by fitting each structure factor peak to a Lorentzian func-

tion of the form

SL,T(κκκω) =
C0(κκκ)

[ω0(κκκ)− ω]2 + Γ2(κκκ)
, (4.15)

where C0(κκκ) is a constant related to the DOS. [152] A dispersion relation is identified by plot-

ting the ω0(κκκ) values in the middle panels of Figs. 4.3(a) and 4.3(b), where the error bars in-

dicate the linewidths. For a-Si, Lorentzian fits to the structure factor peaks have coefficients of

determination[198] greater than 0.8 for |κκκ|/κmax ≤ 0.75 and less than 0.7 for |κκκ|/κmax > 0.75,

where κmax = 2π/a and a is the lattice constant of crystalline silicon (5.43 Å).[131] For a-SiO2,

the coefficients of determination are greater than 0.8 for |κκκ|/κmax ≤ 0.2 and less than 0.7 for

larger wavevectors, where the structure factors peaks are less than an order of magnitude larger
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than the background. To evaluate κmax for a-SiO2, we use a lattice constant of 4.8 Å, which

corresponds to the a-direction of quartz.[199]

For a-Si, the extracted dispersion is nearly linear at small wavevectors with a slight decrease

in slope at the largest values. [48, 52] For a-SiO2, the dispersion is concave-down for the smallest

wavevectors considered, transitioning to a strong concave-up dispersion at intermediate wavevec-

tors. For the intermediate wavevectors, the longitudinal dispersion for a-SiO2 is well-described

by the so-called “dispersion law for diffusons,” where ω ∝ κ2. [152] This large concave-up dis-

persion has been observed in experimental measurements and numerical models of amorphous

materials [53, 75, 173, 175, 191] including a-SiO2.[53, 75, 173, 191] We note that at frequen-

cies lower than 1012 rads/s, experimental measurements of a-SiO2 recover a linear dispersion.

[53, 59, 61, 172, 191] This frequency range is not accessible with the models studied in this

work.

The atomic structures of a-SiO2 and a-Si play an important role in determining the differences

in the low-frequency mode properties. The weakly-bonded network of tetrahedra in a-SiO2 [82,

182, 183, 184] results in a Debye scaling of the DOS that occurs at a lower frequency than

in a-Si (Fig. 4.2), which is a network of strongly-bonded tetrahedra. [73, 131, 186, 193] The

lower-frequency onset of the Debye-scaling of the DOS for a-SiO2 leads to the strong non-linear

dispersion seen in Fig. 4.3(a). The behavior of the DOS and structure factors demonstrate a clear

difference in the properties of the low-frequency modes for our models of a-SiO2 and a-Si, which

further is investigated in the following sections.
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Figure 4.3: Longitudinal (left panel) and transverse (right panel) structure factors [Eq. (4.12)]
for (a) a-SiO2 and (b) a-Si. The wavevectors are normalized by κmax = 2π/a, where a is 4.8
(a-SiO2) and 5.43 (a-Si) Å, based on the lattice constants of the crystalline phases. [131, 199]
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4.4.3 Sound Speed

For a disordered solid, except for the transverse and longitudinal sound speeds, there is not an ac-

cepted method to predict the group velocity of individual vibrational modes. While the structure

factor gives the frequency spectrum needed to construct a propagating state with pure wavevector

κκκ, the individual mode spectra ET(κκκν) and EL(κκκν) predict the plane-wave character of each mode.

[73, 193] It is not generally possible to assign a unique wavevector to individual modes, even

at low frequency, [73, 193] which makes predicting their group velocities challenging. While

attempts have been made to predict individual mode group velocities, [62, 84, 85, 102, 149, 151]

there is no theoretical basis for the proposed methods.

We now use the DOS and structure factors predicted in Sections 4.4.1 and 4.4.2 to predict

the group velocities of the low-frequency modes for a-SiO2 and a-Si (i.e., the sound speeds). By

fitting the DOS from Fig. 4.2 to Eq. (4.3), a sound speed is obtained and is reported in Table

4.1. Because the DOS is a mixture of transverse and longitudinal modes, only a single sound

speed can be predicted. Both longitudinal and transverse sound speeds can be predicted from the

structure factor peaks by forward differencing the dispersion relation as

vs =
ω0(κmin)

κmin
, (4.16)

where κmin is 0.1κmax for a-SiO2 and 0.125κmax for a-Si. The results are provided in Table 4.1.

The transverse and longitudinal sound speeds can also be predicted from the material’s bulk

(G) and shear (K) moduli from[134]

vs,T =

(
G

ρ

)1/2

(4.17)

and

vs,L =

(
4G+ 3K

3ρ

)1/2

. (4.18)
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Using the bulk and shear moduli defined in terms of the elastic constants according to the Voight

convention,[134] the corresponding sound speeds are reported in Table 4.1.

The longitudinal and transverse sound speeds for a-SiO2 predicted using the moduli are 10-

20% lower than predictions made by Horbach et al. using a linear fit to the peaks of the current

correlation function for a model with 8016 atoms using the BKS potential [3568 m/s (transverse)

and 5937 m/s (longitudinal)]. [173] The smaller values predicted by the structure factors and

DOS result from the concave-down dispersion seen at low wavevector (i.e., we are not able to

reach the linear portion of the dispersion curve).[173] Experimental measurements of the sound

speeds of a-SiO2 using Brillouin light and inelastic x-ray scattering range between 3800 to 4000

m/s (transverse) and 6000 to 6400 m/s (longitudinal). [168, 172, 191, 200, 201] Differences

between our predictions and experimental measurements may be related to limitations of the

BKS potential.

The effect of the concave-down dispersion is less pronounced for a-Si than for a-SiO2, where

the sound speeds predicted by all three methods are within five percent of each other. Our

sound speed predictions for a-Si using all three methods are within 10% of predictions made

using the elastic moduli [202, 203] and structure factor[175] from models created by the original

WWW algorithm. [204] The 4096 atom model created by the modified WWW algorithm [186]

predicted a longitudinal sounds speed of 7670 m/s from the structure factor, [177] within 5% of

our prediction. In an attempt to explain the anomalously high longitudinal sound speed (8300

m/s) and thermal conductivity measurements in Ref. 54, three 1000 atom a-Si models relaxed

using a tight-binding electron structure method predicted an average of 4740 m/s (transverse)

and 7830 m/s (longitudinal).[54] By annealing our structures to remove metastability, the sound

speeds predicted by the elastic moduli are increased, but not by the amount reported in Ref. 54.

Experimental transverse sound speeds measurements using Rayleigh wave scattering are 3420

and 4290 m/s for sputtered and ion-bombarded a-Si thin films,[205] which is within 15% of the

predictions from our models. It is clear that the experimentally-measured sound speeds for a-Si

show a wide range.
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Table 4.1: Longitudinal and transverse sound speeds in m/s estimated from the elastic moduli
[Eqs. (4.17) and (4.18)], structure factors [Eq. (4.16)], and DOS [Eq. (4.3)]. The pre-annealed
group velocities predicted by the elastic constants are labeled as Moduli∗.
Method Moduli∗ Moduli ST , SL DOS
a-SiO2

Transverse 2,541 3,161 2,732 2,528
Longitudinal 4,761 5,100 4,779
a-Si
Transverse 3,670 3,886 3,699 3,615
Longitudinal 7,840 8,271 8,047

The sound speed vs,DOS will be used for both a-SiO2 and a-Si for the rest of this work,

allowing for the use of a single polarization for the propagating contribution [Eq. (4.2)]. By

comparing the sound speeds in Table 4.1, it is clear that the low-frequency DOS of our models

for a-Si and a-SiO2 are dominated by transverse modes, which is expected due to their degeneracy

and lower frequencies compared to the longitudinal modes. The transverse sound speed predicted

for our model of a-SiO2 is 85% of that predicted by the other methods (Table 4.1) and that

measured by experiment. [168, 172, 191, 200, 201] While using a smaller transverse sound speed

leads to an underprediction of the mode diffusivities [Eq. (4.5)], it leads to an overprediction of

the DOS [Eq. (4.3)]. Holding all other input parameters in Eq. (4.1) constant, a smaller sound

speed leads to a larger kpr because the DOS scales as 1/v3
s . We can thus regard our kpr prediction

as an upper bound.

4.4.4 Lifetimes

We now predict the lifetimes of all vibrational modes in our models of a-SiO2 and a-Si using the

MD simulation-based NMD method, [12, 62, 81, 99, 101, 151, 155] which explicitly includes

the disorder in the supercell. [62, 83, 84, 85, 196] In NMD, the atomic trajectories from an MD
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simulation are first mapped onto the vibrational mode coordinate time derivatives, [19]

q̇(κ=0κ=0κ=0
ν ; t) =

3,n,N∑
α,b,l

√
mb

N
u̇α(lb; t) e

∗(κκκ=000 b
ν α) exp[i(000 · r0( l0)]. (4.19)

Here, mb is the mass of the bth atom in the supercell, u̇α is the α-component of the atomic veloc-

ity, and t is time. Because the supercells of a-SiO2 and a-Si are disordered, the NMD method can

only be performed at the Gamma point (κκκ = 000). The spectral energy of each vibrational mode,

Φ(ν, ω), is calculated from

Φ(ν, ω) = lim
τ0→∞

1

2τ0

∣∣∣∣ 1√
2π

∫ τ0

0

q̇(κ=0κ=0κ=0
ν ; t) exp(−iωt)dt

∣∣∣∣2 . (4.20)

We choose the frequency-domain representation of the normal mode energy because we find it to

be less sensitive to metastability of the amorphous structure than the time-domain representation.

The vibrational mode frequency and lifetime are predicted by fitting each mode’s spectral

energy to a Lorentzian function,

Φ(ν, ω) =
C0(ν)

[ω0(ν)− ω]2 + Γ2(ν)
, (4.21)

where the constant C0(ν) is related to the average energy of each mode. This expression is valid

when the linewidth Γ(ν) << ω0(ν).[155] The mode lifetime is[12, 99]

τ(ν) =
1

2Γ(ν)
. (4.22)

The NMD-predicted lifetimes are plotted in Figs. 4.4(a) and 4.4(b) for a-SiO2 and a-Si.

Also plotted are the timescales extracted from the structure factor linewidths, 1/[2Γ(κ)] (Section

4.4.2). For a-SiO2, the NMD lifetimes are larger than the Ioffe-Regel (IR) limit τ = 2π/ω,

[75] and are bounded by this limit at low frequencies. There is no clear evidence for an ω−2
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scaling, which would correspond to propagating modes. At mid-frequencies, the NMD lifetimes

are approximately constant and there is a peak near 2 ×1014 rads/s, which corresponds to the

peak in the DOS (see Fig. 4.2). The lifetimes predicted from the structure factor fall below

the NMD-predicted lifetimes and the IR limit. These low values result because the structure

factors for a-SiO2 are evaluated for wavevectors where the resulting wavepackets are formed by

non-propagating modes. [48, 52, 73]

For a-Si, the NMD lifetimes show a clear ω−2 scaling at low frequency. The lifetimes plateau

at higher frequencies, over a wider range of frequencies than for a-SiO2, with two peaks corre-

sponding to the peaks in the DOS (see Fig. 4.2). A similar plateau of lifetimes at high frequen-

cies has been reported for disordered lattices [83, 93, 196] and another study of a-Si.[62] The

transition from the low-frequency scaling to the plateau region occurs near 1013 rads/s, which

corresponds to where the DOS first peaks in Fig. 4.2. Similar behavior has been observed for

models of disordered lattices. [196] The lifetimes predicted by the structure factors are in good

agreement with those predicted by NMD at low frequencies. Similar agreement has been re-

ported in other models of amorphous materials. [52, 96, 97, 206] The agreement between the

NMD-predicted lifetimes and the structure factor timescales for a-Si at low frequencies indi-

cates that these modes are plane-wave-like and that the wavepackets formed by these modes are

propagating. [48, 52, 73]

The NMD-predicted lifetimes for a-Si range from 0.5 to 10 ps and are similar in magnitude to

those predicted for previous WWW-generated models of a-Si. [96, 97, 98, 207] We note that one

previous study of a-Si modeled using the Tersoff potential predicted vibrational lifetimes on the

order of 100 ps,[62] an order of magnitude larger than the values reported here and in previous

studies. [96, 97, 98, 207] It is unclear what the source of this discrepancy is, although in Ref. 62

the NMD analysis was performed in the time domain, where the effects of metastability can be

more strongly pronounced. Using the Tersoff potential on the WWW a-Si models in this work,

we predict similar lifetimes to those from the SW potential.
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4.4.5 Diffusivities

Using the sound speeds predicted from the DOS (Table 4.1), the NMD-predicted lifetimes for

a-SiO2 and a-Si are used to predict the mode diffusivities with Eq. (4.5). The results are plotted

in Figs. 4.5(a) and 4.5(b). We note that the sound speed is most appropriate for the lowest-

frequency modes, where the DOS scales as ω2 (Fig. 4.2). The AF theory is also used to predict

the mode diffusivities and the results are plotted in Figs. 4.5(a) and 4.5(b).

For a-SiO2, the mode diffusivities predicted by NMD and AF agree well over the majority of

the frequency range. The AF diffusivities at the highest frequencies show a sharp decrease, which

is an indication that these modes are localized.[48] The low- and mid-frequency diffusivities are

above the high-scatter limit,

DHS =
1

3
vsa, (4.23)

which assumes that all vibrational modes travel with the sound speed and scatter over a distance

of the lattice constant. [2] In evaluating Eq. (4.23), we use the lattice constant of the crystalline

phases (see Section 4.4.2). The low-frequency NMD diffusivities do not show a definitive scal-

ing. Based on the results in Ref. 53, we choose a propagating/non-propagating cutoff frequency

of 4.55× 1012 rads/s, which is at the onset of the Debye scaling of the DOS (Fig. 4.2). The con-

stant B in Eq. (4.8) for n = 2 is then fit to the AF-predicted diffusivities for frequencies below

the cutoff by dividing the diffusivities by vs,DOS . The fit value is B = 5.65× 1013 rads2s−1.

For a-Si, the mode diffusivities predicted by NMD at low frequencies show a clear ω−2 scal-

ing. The NMD-predicted diffusivities are larger and show less scatter than those predicted by

the AF theory, which is due to the finite-size system and the broadening that is required to eval-

uate Eq. (4.10).[48] By using a larger broadening (100δωavg), the scatter in the AF-predicted

diffusivities at low frequency can be smoothed, but at the cost of decreasing the diffusivities at

intermediate and high frequencies, which affects the predicted diffuson contribution to thermal

conductivity (see Section 4.5.1). It is possible that a frequency-dependent broadening may be

necessary for a-Si and the AF theory, but determining this dependence is not necessary for inter-
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preting our results. For a-Si, the NMD- and AF-predicted diffusivities diverge near a frequency

of 1013 rads/s. The NMD-predicted diffusivities are relatively constant above this frequency,

indicating that the sound speed is no longer an applicable scaling. The AF diffusivities are larger

than the high-scatter limit [Eq. (4.23)], except for the highest frequency modes, which are local-

ized. [48]

For a-Si, we choose ωcut and B so that Eq. (4.5) is equal to the average AF-predicted diffu-

sivity at the cutoff frequency. The resulting values are ωcut = 1.16× 1013 rads/s (which is at the

onset of the Debye scaling of the DOS, Fig. 4.2) and B = 2.76 × 1014 rads2s−1. This choice

allows Eq. (4.5) to pass reasonably well through both the AF- and NMD-predicted diffusivities.

While experiments on a-SiO2 show that there is a cross-over region for the low-frequency

lifetime scaling from ω−2 to ω−4,[58] and back to ω−2, [58, 59, 60, 61] our present model is not

large enough to investigate the mode properties in this cross-over region. Because experiments

are limited for a-Si thin films, [57] we also consider a ω−4 scaling for Eq. (4.8). Because this

scaling is not clear from the data in Fig. 4.5(b), we use a cutoff frequency of 1.52 ×1013 rads/s

(which is at the onset of the Debye scaling of the DOS, Fig. 4.2) based on Refs. 48 and 51

and choose B = 2.07 × 1040 rads4s−3 so that Eq. (4.5) is equal to the average AF-predicted

diffusivity at the cutoff frequency.

Both a-SiO2 and a-Si have a region at higher frequencies where the AF-predicted mode dif-

fusivities are relatively constant. This behavior has been reported for model disordered systems

such as disordered lattices[93, 152, 196] and jammed systems. [95, 158] While diffusons are

non-propagating modes whose MFPs are not well-defined,[48] a diffuson MFP can be calculated

from

ΛAF (ωi) = [3DAF (ωi)τ(ωi)]
1/2, (4.24)

where τ(ωi) is the NMD-predicted lifetime for that mode. The diffuson MFPs are plotted in Fig.

4.6. Using this definition, ΛAF (ωi) for both a-SiO2 and a-Si is found to vary between the crystal
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lattice constant (∼ 0.5 nm) and the supercell size (∼ 5 nm) for modes with frequency above the

cutoff. Similar MFPs have been estimated for diffusons in a-Si in previous studies.[48, 52] For

modes with frequency below the cutoff, the NMD-predicted MFPs from Eq. (4.7) range up to

16 nm (a-SiO2) and 43 nm (a-Si). This result is in contrast to the MFPs estimated in Ref. 62 for

a-Si, which ranged up to 500 nm. We believe that the origin of the large MFPs in Ref. 62 is a

combination of the predicted lifetimes (see Section 4.4.4) and the method used to estimate the

mode group velocities.

A diffuson velocity scale can be calculated from

vAF (ω) =

[
3DAF,i(ω)

τ(ω)

]1/2

, (4.25)

which is related to the diffuson MFP [Eq. (4.24)]. The calculated diffuson velocities are shown

in the insets of Fig. 4.6. For a-SiO2, vAF is near vs,DOS over the whole frequency range, which

is the assumption made for the high-scatter limit Eq. (4.23). For a-Si At low frequencies, vAF is

as high as vs,DOS and decreases to about (1/3)vs,DOS in the mid-frequency range. This variation

of vAF (ω) is similar to the variation of the group velocity which can be estimated from the

dispersion relation in Fig. 4.3. Compared to the diffuson velocities in Fig. 4.3, the effective

group velocities that have been predicted using dispersion relations near zero wavevector for

large supercells of amorphous [62, 84, 85] and disordered lattices[149, 151] are underestimates in

the low- and mid-frequency range. For the highest frequencies, the modes are localized (locons)

and their velocities (and hence, diffusivities) go to zero since they do not contribute to thermal

transport.[73]
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4.5 Thermal Conductivity

4.5.1 Bulk

To predict the bulk thermal conductivity for our models of a-SiO2 and a-Si, we use both Eq.

(4.1) and the GK method. The GK method is computationally inexpensive compared to the

NMD and AF methods so that larger system sizes can be accessed. The GK-predicted thermal

conductivities for a-SiO2 and a-Si are plotted in Fig. 4.7 versus the inverse of the system size.

For a-SiO2, there is no system-size dependence. The bulk thermal conductivity is estimated to

be 2.1± 0.2 W/m-K by averaging over all the samples. This prediction is in agreement with the

GK predictions in Ref. 82 within the uncertainties, but larger than the MD-based direct-method

predictions in Ref. 208. Shenogin et al. predicted the total thermal conductivity of a-SiO2 using

non-equilibrium MD simulations of the same small structures used in this work. They find 2.0

W/m-K for their largest system which was based on a 972 atom model tiled six times in one

direction.[157] Our GK-predicted value is larger than experimental measurements, which range

between 1.3 and 1.5 W/m-K, [2, 15, 70, 71] which may be due to the classical nature of the MD

simulation and/or the suitability of the BKS interatomic potential for modeling thermal transport

in a-SiO2. [82, 208] Quantum statistical effects are considered later in this section.

For a-Si, there is a clear system-size dependence of thermal conductivity. Because the low-

frequency DOS has the form of Eq. (4.3) and the diffusivities scale as ω−2, the thermal conduc-

tivity will scale as the inverse of the system size. The bulk value can be found by extrapolating

to an infinite system size. [29, 36, 155] The extrapolation is performed using the three largest

system sizes, † leading to a bulk value of 2.0 ± 0.2 W/m-K, where the uncertainty is estimated

from the ensemble averaging for each system size. Our extrapolated bulk value is in reasonable

agreement with experimental values for a wide range of thin film thicknesses (see Fig. 4.8 in

Section 4.5.2).
†We do not observe that tiling the a-Si model increases the thermal conductivity above the expected linear scaling

as was found in Ref. 62 using the MD-based direct method. This finding is likely due to the small model used to
perform the tiling in that study (512 atoms), while we use a large model (100,000 atoms).
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To predict thermal conductivity from Eq. (4.1), we use the parametersB and ωcut specified in

Section 4.4.5 assuming an ω−2 scaling below ωcut and the AF-predicted diffusivities. For a-SiO2,

the propagating, non-propagating, and total thermal conductivities are 0.10 ± 0.05, 1.9 ± 0.1,

and 2.0 ± 0.1 W/m-K (see Table 4.2). The uncertainties are estimated by varying ωcut and the

AF broadening by 10%. The total value agrees with the GK value within the uncertainties. For

the propagating contribution, using an expression similar to Eq. (4.2), Baldi et al.[53] estimated

0.1 W/m-K and Love and Anderson[50] estimated 0.03 W/m-K.

By using the ω−2 diffusivity scaling for a-Si, the propagating, non-propagating, and total

thermal conductivities are 0.6 ± 0.2, 1.2 ± 0.2, and 1.8 ± 0.2 W/m-K. This value for total

thermal conductivity is in agreement with the GK-predicted bulk value within the uncertainties.

Earlier studies using similar models of a-Si found that kpr is less than half of kvib,[48, 52] in

agreement with our results. A recent study of a-Si modeled using the Tersoff potential found

kpr ≈ kAF .[62] Estimates based on experimental measurements have found kpr to be as low as

20%[51, 52] and as high as 80% of kvib. [54, 55]

If an ω−4 lifetime scaling is assumed for a-Si, the thermal conductivity diverges at low fre-

quency. We bound the thermal conductivity by assuming the sample to be a thin film of thickness

tf and modify the lifetimes using the Matthiessen rule,[20]

1

τeff
=

1

τbulk
+

2vs
tf
. (4.26)

Using the largest film thickness from the experimental literature (80 µm)[54] gives a propagating

contribution to thermal conductivity of 3.0± 0.4 W/m-K, which is significantly larger than GK-

predicted value. Using the ω−2 scaling and this film thickness gives a propagating contribution of

0.6 W/m-K (i.e., there is no change from the bulk value). While predictions for kpr for a-Si vary

based on the assumed scaling of the low-frequency vibrational lifetimes [48, 51, 52, 54, 55, 62]

all evidence supports that kpr is a significant fraction of the total thermal conductivity. [15, 48,

51, 52, 54, 55, 62]
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Figure 4.7: Thermal conductivities of a-SiO2 and a-Si predicted using the GK method and Eq.
(4.1). For a-SiO2, the GK-predicted thermal conductivity is size-independent, indicating that
there is not an important contribution from propagating modes. For a-Si, there is a clear size
dependance, indicating the importance of propagating modes.

In Section 4.2, we approximated the specific heat of the propagating and non-propagating

modes by the classical, harmonic-limit value of kB. At a temperature of 300 K, the quantum heat

capacity [Eq. (4.4)] at the largest cutoff frequency for either a-SiO2 or a-Si is 0.98kB, justifying

the use of the classical specific heat in the propagating term in Eq. (4.2). For the AF contribution,

however, the effect of the quantum specific heat is important. At the highest frequency in each

of a-SiO2 and a-Si, the specific heat is 0.073kB and 0.47kB. Using Eq. (4.4) in Eq. (4.9) gives

AF thermal conductivities of 1.4 ± 0.1 and 1.0 ± 0.1 W/m-K for a-SiO2 and a-Si (Table 4.2).

This correction brings the estimate of kvib for a-SiO2 into good agreement with experimental

measurements. [2, 15, 70, 71] For a-Si, the modified kAF is 20% lower than the classical-limit

value.
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Table 4.2: Thermal conductivities for bulk a-SiO2 and a-Si predicted by the GK method (kGK)
and Eqs. (4.1) (kvib), (4.2) (kpr), and (4.9) (kAF ). For the non-propagating contribution, classical
and quantum specific heats are considered.
Thermal Conductivity (W/m-K) a-SiO2 a-Si
kGK 2.1 ± 0.2 2.0 ± 0.2
kvib (classical) 2.0 ± 0.1 1.8 ± 0.2
kpr 0.10 ± 0.05 0.6 ± 0.2
kAF (classical) 1.9 ± 0.1 1.2 ± 0.1
kAF (quantum) 1.4 ± 0.1 1.0 ± 0.1
kvib (quantum) 1.5 ± 0.1 1.6 ± 0.2
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4.5.2 Accumulation Function

In their broadband frequency domain thermoreflectance measurements, Regner et al.,[15] adopt-

ing the convention of Koh and Cahill,[162] interpret the measured thermal conductivity at a given

thermal penetration depth to be representative of the thermal conductivity accumulation function

at a MFP equal to the thermal penetration depth. [163, 165] Their results are plotted in Fig. 4.8(a)

for a 1000 nm thick film of a-SiO2 and in Fig. 4.8(b) for 500 nm and 2000 nm thick films of a-Si.

The vertical coordinate of any point on the accumulation function represents the thermal con-

ductivity that comes from phonons with MFPs less than the horizontal coordinate at that point.

Also plotted in Figs. 4.8(a) and 4.8(b) are experimental measurements of thin film thermal con-

ductivities. For a-Si, the experimental measurements are broadly grouped by sample preparation

technique: (A) chemical vapor deposition [54, 55, 67] and (B) sputtering. [51, 65, 66]

Based on the results in Section 4.4.5, we build thermal conductivity accumulation functions

for a-SiO2 and a-Si from

k(Λ∗) = kAF +

∫ Λ∗

Λcut

k(Λ)dΛ, (4.27)

where Λcut is the MFP at the cut-off frequency, Λ∗ is the maximum MFP considered in the ther-

mal conductivity accumulation, k(Λ) is the thermal conductivity as a function of MFP,[165] and

the propagating mode MFPs are calculated using lifetimes from Eq. (4.26). The non-propagating

contribution kAF is evaluated using the quantum specific heat (see Section 4.5.1). The results are

plotted for a-SiO2 in Fig. 4.8(a) using an infinite film thickness and for a-Si in Fig. 4.8(b) using

a film thickness of 80 µm. ‡

The predicted thermal conductivity accumulation function for a-SiO2 saturates at a MFP of

10 nm, which is on the order of the finite size of our model. This result is in good quantitative

agreement with the thermal penetration depth-independent thermal conductivity measurements

‡We note that building the accumulation function ignores modes that propagate in a direction that is not per-
pendicular to the cross-plane film direction that have MFPs larger than the film thickness. Furthermore, Eq. (4.26)
reduces the MFP of modes with Λ ∼ tf such that plotting MFP and film thickness on the same horizontal axis is an
approximation. Since we consider inifite (a-SiO2) and 80 µm (a-Si) film thickness in evaluating Eq. (4.26), these
effects are not important for the range of film thickness and MFPs shown in Figs. 4.8(a) and 4.8(b).
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using broadband frequency domain thermoreflectance[15] and experimental measurements that

show minimal film-thickness dependance. [70, 71]

For a-Si, the low-MFP plateau of thermal conductivity in the measurements of Regner et

al. is consistent with our predicted kAF . The propagating contribution to the accumulation is

predicted using ω−2 and ω−4 lifetime scalings, which have both been inferred from thin film

experiments. [46, 48, 51, 52, 54, 55, 56] Predictions for both the ω−2 and ω−4 scalings pass

reasonably through the thin film thermal conductivity measurements, particularly for thicknesses

in the 50-2000 nm range. The measurements of Regner et al. show sharper accumulations than

either the ω−2 or ω−4 scalings, particularly for the 2000 nm film. For the ω−2 scaling, which best

matches our model [see Fig. 4.4(b)], the thermal conductivity accumulation saturates at 1 µm,

in good agreement with where the measurements of Regner et al. saturate for their 500 nm film.

The 2000 nm film accumulation shows no sign of saturation.
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Figure 4.8: (a) Predicted thermal conductivity accumulation function [Eq. (4.27)] for a-SiO2

compared with experimental broadband frequency domain reflectance measurements by Regner
et al.[15] and thin film measurements from Refs. 70 and 71. The predicted thermal conductivity
accumulation demonstrates that the propagating contribution is negligible in our model, which is
in accord with the experimental measurements. (b) Predicted thermal conductivity accumulation
function for a-Si compared with experimental measurements by Regner et al. and thin films
fabricated by sputtering (Expt. A) [51, 65, 66] and chemical vapor deposition (Expt. B). [54,
55, 64, 67] The predicted thermal conductivity accumulation demonstrates that the propagating
contribution is significant for a-Si. We note that thermal conductivities as high as 6 W/m-K
(not plotted) have been measured for a-Si thin films deposited using hot-wire chemical vapor
deposition. [55]

106



4.6 Summary

We investigated the contributions of propagating (kpr) and non-propagating (kAF ) modes to the

total vibrational thermal conductivity (kvib) of a-SiO2 and a-Si using the NMD method (Section

4.4.4), AF theory (Section 4.4.5), and the GK method (Section 4.5.1). The atomic structures

of a-SiO2 and a-Si play an important role in determining the mode-level properties needed to

predict the propagating and non-propagating contributions. The propagating regime ends at a

lower frequency for a-SiO2, which is evident from the DOS (Fig. 4.2) and the effective dis-

persion extracted from the structure factors [Fig. 4.3(a)]. This smaller maximum frequency of

propagating modes is due, in part, to the weak bonding that exists between the SiO4 tetrahedra

in a-SiO2, [82, 182, 183, 184] while a-Si is formed by a network of strongly-bonded tetrahedra.

[73, 131, 186, 193] The structural differences are also apparent in the low-frequency scalings of

the mode lifetimes (Fig. 4.4) which show a clear ω−2 dependance (i.e., phonon-like) for a-Si, but

not for a-SiO2. The combined effect of all the mode-level properties results in a significant dif-

ference in the propagating and non-propagating contributions to thermal conductivity for a-SiO2

and a-Si (Table 4.2).

For our model of a-SiO2, the contribution from propagating modes is negligible (∼6%). Our

predictions align with experimental measurements of the film thickness-independence of ther-

mal conductivity [70, 71] and thermal penetration depth-independence in the measurements of

Regner et al.[15] While the finite size of our model makes it difficult to identify a clear scal-

ing of the low-frequency lifetime scaling, experiments show that both ω−2 and ω−4 scalings

exist in a-SiO2.[58, 59, 61] In all cases, the propagating contribution to thermal conductivity is

negligible.[50, 53, 70, 71]

For our model of a-Si, the thermal conductivity has a significant (∼35%) contribution from

propagating modes that are best described by a lifetime scaling of ω−2. Our predicted non-

propagating thermal conductivity contribution is in good agreement with the plateau at low-

MFP for both films studied by Regner et al. For both films, the thermal conductivities accumu-
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late much faster than our predictions. The large range of thermal conductivity measurements

on a-Si thin films suggest that a comprehensive experimental study using recently developed

thermoreflectance techniques[15, 162, 164, 209] on varying film thicknesses and preparation

techniques is necessary. It may be particularly helpful to perform the experiments at temper-

atures less than 10 K, where the propagating contribution dominates for both a-SiO2 and a-

Si and the low-frequency lifetime scaling, which is still under debate, can be better resolved.

[1, 2, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 69]
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Chapter 5

Conclusion

5.1 Overview and Contributions

5.1.1 Molecular Dynamics-based Methods for Predicting Lifetimes

In Chapter 2, two MD-based methods for predicting phonon properties and thermal conductivity

were compared. The Φ method, which is the NMD method in the frequency-domain, was prop-

erly derived starting with anharmonic lattice dynamics theory (see Appendix A.1). The meaning

of the proposed spectral method, Φ′, was clarified and related to the dynamic structure factor

(see Appendix A.2). While the Φ′ method does not accurately predict the mode lifetimes, the

advantage of the Φ′ versus the Φ method is that it does not require an eigenvalue solution for the

mode eigenvectors. The dynamic structure factor, closely related to the Φ′ method (see Appendix

A.2), can predict frequency-dependent timescales from MD simulations for systems with a larger

number of atoms than those studied in this work using the NMD method (see Section 5.2.2).

5.1.2 Thermal Transport in Alloys and the High-scatter Limit

In Chapter 3, thermal transport in two model alloys was investigated. The work provides several

original insight into the physics of thermal transport in disordered lattices (i.e., isotopic solids
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and alloys). The first rigorous test of the virtual crystal (VC) approximation was presented.

The VC-ALD technique has been used in a number of recent studies [30, 32, 37, 38, 39], but

its limits had not been assessed until this study. The limits of the VC-ALD approach were

determined using computationally-inexpensive empirical potentials and self-consistently treating

the disorder explicitly and as a perturbation. The results indicate that while VC-ALD is generally

an accurate method for materials whose thermal conductivity is dominated by low-frequency

vibrational modes, care must be taken when modeling alloys with low thermal conductivities,

where significant underprediction of thermal conductivity is likely.

The following calculations that were performed are novel additions to the literature:

• Use of the VC-NMD method to model disordered lattices explicitly. The novel contribution

is the use of NMD to predict the lifetimes of a disordered lattice using the normal modes

of the virtual crystal (see Section 3.3.3.1 and Appendix A.3).

• To model the disorder explicitly, the AF Theory calculations were performed on a disor-

dered lattice (Section 3.3.4). This theory has only previously been applied to amorphous

phases [48, 52, 62, 157]. The AF theory predictions showed that the lower-limit of diffu-

sivity of high-frequency modes in a disordered lattice is the high-scatter limit, in contrast

to the VC-NMD and VC-ALD methods, which incorrectly predict that the limiting value

is zero. Identification of this high-scatter limit of mode diffusivity was essential for iden-

tifying the breakdown in the VC methods. The high-scatter limit of diffusivity is usually

assumed, without theoretical justification, in phenomenological models for disordered and

amorphous materials [1, 2, 72]. This study gives self-consistent justification for its use.

• Calculation of the structure factor of disordered lattices to predict effective dispersion

(Section 3.3.2). The structure factor was calculated for modes in a model disordered lat-

tice, which has previously been calculated for modes in amorphous materials [48, 52, 73,

75, 152, 153, 169, 170, 173, 175, 177, 178, 180, 193, 194, 195, 196, 197]. The struc-

ture factor predictions help to demonstrate that the VC-predicted group velocities are
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an underprediction of the representative velocity scale for mode diffusivities in the dis-

ordered lattice. While previous studies have attempted to predict the group velocity of

modes in disordered systems, there is no theoretical justification for the methods used

[62, 84, 85, 102, 149, 151].

By using all four methods discussed in Section 1.3, a self-consistent study of the VC ap-

proximation identified important connections between the modeling of disordered lattices and

amorphous materials. By using three phases of LJ argon (perfect crystal, disordered lattice, and

amorphous phase), the applicability of the different methods for predicting the thermal conduc-

tivity and mode-properties was demonstrated:

• MD-based GK method: suitable for modeling all three phases, but does not predict the

mode properties.

• Phonon-based VC-ALD and VC-NMD: suitable for the perfect crystal and disordered lat-

tices with the high-scatter limit correction.

• The AF theory of diffusons: suitable for the high-frequency modes of the disordered lattice

and all modes of the amorphous phase of LJ argon.

5.1.3 Mean Free Paths of Propagating Modes in Amorphous Materials

In Chapter 4, a clear theoretical and modeling framework for amorphous materials was presented,

which can form the basis for studying a range of disordered materials. This modeling framework

grew as a natural extension of the work and results from Chapter 3. The NMD-predicted life-

times, along with the material’s sound speed, can be used with the AF theory diffusivities to

determine the transition from propagating to non-propagating modes (Section 4.4.5). The chal-

lenge is that in disordered materials, the group velocities are not well-defined and there is no

theoretical basis to predict them [62, 84, 85, 102, 149, 151]. Instead, the mode diffusivities are

the fundamental quantities, and the predictions from both the NMD and AF theory methods must

be considered simultaneously.
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The following calculations that were performed are novel additions to the literature:

• Identified the effects of metastability in amorphous materials on predicting lifetimes using

the NMD method (see Section 4.3.1 and Appendix A.4). Metastability is likely to affect

the application of the NMD method in other ordered and disordered systems with weak

atomic bonding (see Section 5.2.1).

• Identified differences in the structural properties of a-SiO2 and a-Si that lead to a substan-

tial difference in the propagating contributions to thermal conductivity in each.

• Predicted the effective dispersion from the static structure factor to estimate mode group

velocities (Section 4.4.2). While effective dispersions have been predicted from the struc-

ture factors for models amorphous materials previously, they had not been used to help

predict the thermal conductivity. The effective dispersions justify the use of the sound

speed at low frequencies.

• Using the justified sound speeds, it was demonstrated that the NMD-predicted diffusivities

are more reliable than those predicted by the AF theory at low frequencies (Section 4.4.5).

• By comparing predictions from the NMD, AF, and GK methods, it was demonstrated that

an ω−2 scaling of the low-frequency mode lifetimes best describes the model of bulk amor-

phous silicon (Section 4.5.1). Comparisons of the predicted thermal conductivity accu-

mulations with experimental measurements demonstrated that further experimentation is

necessary to resolve the low-frequency scaling of the mode lifetimes.

5.1.4 Predictive Ability versus Computational Cost

With the results from all of the studies presented in this work, a new ranking of the predictive

capabilities for the four methods discussed in Section 1.3 is made in Table 5.1.

The GK method played an important role in verifying the mode properties predicted by all

methods. In Chapter 2, the GK method provided a common comparison for the Φ and Φ′ meth-

ods, which helped to confirm the disagreement between the two methods. In Chapter 3, the
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GK method provided a comparison for predictions from the VC-NMD and VC-ALD methods,

which helped to identify the validity of the high-scatter limit of the diffuson mode diffusivities

in disordered lattices. Finally, in Chapter 4, the GK method helped to confirm the scaling of the

low-frequency contribution of the finite models of a-Si (Section 4.5.1). The GK method will be

a valuable modeling tool for future work on disordered systems.

The VC-ALD method was shown to be limited to low frequency modes and best suited to

high-thermal conductivity materials. High thermal conductivity materials are typically domi-

nated by the contribution from low-frequency modes that are well-modeled by VC-ALD. VC-

ALD may not be well-suited for low thermal conductivity (full spectrum) materials, where the

perturbation theory is not valid. The AF theory models accurately the mid- and high-frequency

modes in disordered materials (Section 3.3.4), but it does not properly model the low-frequency

modes for disordered lattices. It also does not definitively model the low-frequency modes in

amorphous materials (Section 4.4.5).

The VC-ALD method and AF theory can be supplemented by predictions from the NMD

method, but additional assumptions are also required. The VC-NMD method is able to accu-

rately predict the lifetimes of all vibrons in disordered lattices (Section 3.3.3.1). However, the

effective group velocities are still assumed to be those of the VC, which limits the NMD method’s

predictive ability (Section 3.4). Propagating modes in a-Si can be identified definitively by NMD-

predicted lifetimes (see Section 4.4.4), but an assumption about the effective mode group veloc-

ities must be made (Section 4.4.5). Clearly, predicting group velocities for modes in disordered

materials is a major challenge that deserves further investigation [62, 84, 85, 102, 149, 151].

With these findings, the predictive methods are re-ranked in order of their capabilities in

Table 5.1. The NMD method, while the most computationally demanding of the four predictive

methods (Table 1.1), is ranked first in mode- and second in system-level predictive capability.

The reasons for these rankings are:

• The NMD method (Φ) is derived correctly from anharmonic lattice dynamics theory and
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Table 5.1: Ranking of the predictive ability from low to high (left to right) of theoretical tech-
niques for mode-level and system-level thermal properties for disordered systems.

System-level CH Theory ALD AF Theory NMD GK
Mode-level CH Theory GK AF Theory ALD NMD

accurately predicts the mode lifetimes and thermal conductivities compared to the Φ′

method.

• The VC-NMD method accurately predicts the mode lifetimes for disordered lattices com-

pared to the VC-ALD method. This leads to better agreement with the GK method, which

is the most accurate system-level method.

• The NMD method accurately predicts the low-frequency lifetimes for a-Si, while the AF

theory predictions have large fluctuations that depend on the broadening factor. The scaling

from the NMD lifetimes is used to extrapolate a bulk thermal conductivity which is in good

agreement with the system-level GK method.

The ALD and AF theory are considered to be equivalent at predicting mode-level and system-

level properties because, for disordered lattices, the VC-ALD method fails to accurately predict

the mode lifetimes for high frequencies, while the AF theory is not valid for low frequencies.

Either method could be considered superior depending on whether the material being studied is a

disordered lattice that is low-frequency dominated or full-spectrum. The AF theory is superior if

the material is amorphous, although there have been ALD predictions[207] of the mode lifetimes

in a-Si that are in good agreement with NMD predictions[96, 97] in the literature.
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5.2 Future Work

5.2.1 Large Unit Cell Materials

Large unit cell (LUC) materials are an important class of crystalline materials with a wide range

of thermal transport applications [82, 87, 210, 211, 212]. LUCs have an ordered (crystalline)

structure, but the unit cell of the crystal has a large number of distinct atoms. LUCs are effectively

disordered over length scales on the order of the atomic spacing and their thermal conductivities

can be as low as a glass [213]. One key advantage of LUC materials is that they are still ordered

from the standpoint of electrons, which results in good thermoelectric performance [214, 215,

216].

Some LUC materials, such as SiO2-based zeolites, have been well-studied [82]. Others, such

as C60[217] or PCBM, are currently being investigated for their thermal properties [11]. While

experimental measurements of PCBM demonstrates that propagating modes contribute negligi-

bly, the mechanisms for its exceptionally-low conductivity are still not understood. Modeling

could provide the necessary insights.

From a modeling perspective, LUC materials pose a number of challenges, theoretically and

computationally, as compared to small unit cell (SUC) materials:

• Predicting model-level properties using ALD is challenging because the computational

time scales as n4 (Section 1.4).

• LUC are crystalline, but are often organic or organic/inorganic hybrid materials. The struc-

ture of LUC materials is often poly- or quasi-crystalline, with less long-range order than

SUC materials [212, 218].

• The presence of weak bonding in organic/inorganic materials [212, 219, 220] can lead to

metastability (Appendix A.4), which makes it challenging to perform the NMD method.

• MD simulations of LUC materials also face challenges. While many LUC materials have

complex bonding environments, DFT calculations are too computationally expensive to
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perform MD simulations to predict thermal properties [29, 36, 107, 108, 109, 110, 221].

Even empirical interatomic potentials are often computationally-expensive because of the

complex bonding terms required [222, 223, 224, 225].

Based on the results in this work, there are several modeling strategies that can be used to

study LUC materials:

• Identify signs of propagating modes from experimental measurements, if available [11,

226].

• Based on the results for alloys (Section 3.3.4), the AF diffuson theory may have application

for LUC materials, particularly at high frequencies and for those LUC materials which are

only quasi-crystalline, such as C60 [218].

• The high-scatter limit for thermal conductivity [Eq. (3.3)] can be used to establish a plau-

sible lower-bound for LUC materials [213]. Similarly, the high-scatter limit for mode

diffusivity can establish lower-bounds on the mode-level properties.

• Perform calculations using computationally-inexpensive classical interatomic potentials to

assess if DFT calculations are necessary.

5.2.2 Lifetimes from Larger MD Simulations

5.2.2.1 Exact Normal Modes

The NMD method used throughout this work is limited by its computational demands, which

require a larger number (∼ 100) of parallel processors to perform the analysis in a reasonable

amount of time (less than 24 hours). While the NMD method is trivially-parallelizable over the

normal modes, the eigenvalue solution of the normal modes themselves is more computationally

demanding. The eigenvalue solutions can be performed in parallel using the suggestions given

in Section 5.2.3.

While parallel eigenvalue solution can increase the system sizes accessible with NMD, the
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method is ultimately limited by the poor scaling of the run time and memory requirements (Sec-

tion 1.4). Additional computational cost can be saved by computing only a small subset of the

normal modes for a system. A previous study used the Lanczos algorithm[227] to compute a

small subset of the normal modes for a 32,000 atom system [206]. The same 32,000 system

was subsequently studied using MD simulations and the dynamic structure factor [171], which

is discussed in the next section.

5.2.2.2 Dynamic Structure Factor

MD simulations are computationally efficient. Systems sizes of nearly 106 atoms have been

studied in this work, which were bulk systems with equal simulation side lengths in all three spa-

tial dimensions. The dynamic structure factor, described in Section A.2, can predict vibrational

timescales and does not need the eigenvectors of the exact normal modes to perform the mapping

of the atomic trajectories. This method, combined with appropriately shaped supercells, could

probe the timescales of vibrational modes up to wavelengths between 24 and 100 nm using sim-

ilar computational resources to those used in this work. This presents an opportunity to compare

with experimental measurements of spectral linewidths at frequencies below 1 THz, which have

been recently reported for a-SiO2 [58, 59, 61, 228] but are lacking for a-Si [57]. The current

correlation function, closely related to the dynamic structure factor [173], can even be used to

study the spectral character of motions in a fluid [229].

5.2.3 Comprehensive Package for Thermal Transport Calculations

Four different predictive methods were used in this work (Section 1.3). Packages exist for per-

forming some of the calculations necessary for these methods. However, no one package can

perform all necessary calculations, particularly both the mode-level and system-level thermal

transport properties. LAMMPS, for example, contains both the GK and direct methods for pre-

dicting the system-level thermal conductivity. A package to predict the mode-level properties is
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needed. Ideally, the mode-level properties could be predicted alongside the system-level calcu-

lations, as is necessary to perform the NMD and spectral techniques described in Section 2.2.1.

The Python language is an ideal environment for “gluing“ together the available codes and

extending their functionality in dynamic ways. For example, while the NMD method is trivially-

parallelizable over the normal modes, the eigenvalue solution of the normal modes themselves is

more computationally demanding. Standard routines for eigenvalue solutions of the dynamical

matrix can calculate the exact normal modes for systems up to 8000 atoms in less than 24 hours

using current computational resources [134]. These eigenvalue solution routines typically run

on single processors. The eigenvalue solutions can be performed using the Portable, Extensible

Toolkit for Scientific Computation (PETSc), which has routines for performing eigenvalue solu-

tions in parallel. The PETSc package has Python bindings contained in the petsc4py package,

which allows for easy interface with the existing lattice dynamics package GULP[134] and MD

package LAMMPS [136]. LAMMPS already contains a Python interface, and such an interface

could be created for GULP using the f2py package.
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Appendix A

Computational Details

A.1 Derivation of Phonon Spectral Energy Density, Φ

To derive the correct expression for the phonon SED, Φ, we begin with harmonic lattice dynamics

theory.[17, 19] In reciprocal space, the system Hamiltonian, H , is

H =
1

2

N,3n∑
κκκ,ν

[
q̇∗(κκκν ; t) q̇(

κκκ
ν ; t) + ω2

0(
κκκ
ν) q

∗(κκκν ; t) q(
κκκ
ν ; t)

]
=

N,3n∑
κκκ,ν

[T(κκκν ; t) + V (κκκν ; t)] ,

(A.1)

where t is time, ω0(
κκκ
ν) is the frequency of the phonon mode denoted by wave vector κκκ and disper-

sion branch ν, and N and n are the total number of unit cells and the number of atoms in the unit

cell. The Hamiltonian is the total system energy and is the sum of the mode- and time-dependent

kinetic and potential energies, T(κκκν ; t) and V (κκκν ; t). The phonon normal mode coordinate, q(κκκν ; t)

and its time derivative, q(κκκν ; t), are given by

q(κκκν ; t) =

3,n,N∑
α,b,l

√
mb

N
uα(lb; t) e

∗(κκκ b
ν α) exp[iκκκ · r0( l0)] (A.2)
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and

q̇(κκκν ; t) =

3,n,N∑
α,b,l

√
mb

N
u̇α(lb; t) e

∗(κκκ b
ν α) exp[iκκκ · r0( l0)], (A.3)

wheremb is the mass of the bth atom in the unit cell and r0( l0) is the equilibrium position vector of

the lth unit cell. The α-component of the displacement from equilibrium, uα(lb; t), and velocity,

u̇α(lb; t), of the bth atom in the lth unit cell are time-dependent and are related to the phonon mode

coordinates through the time-independent eigenvector that has components e(κκκ b
ν α).

The potential and kinetic energies of the normal mode are

V (κκκν ; t) =
1

2
ω(κκκν)

2 q∗(κκκν ; t) q(
κκκ
ν ; t) (A.4)

and

T(κκκν ; t) =
1

2
q̇∗(κκκν ; t) q̇(

κκκ
ν ; t) , (A.5)

such that the total energy of the normal mode is

E(κκκν ; t) = T(κκκν ; t) + V (κκκν ; t) . (A.6)

In an anharmonic system, the phonon populations fluctuate about the equilibrium distribution

function.[16, 17, 18] The phonon mode coordinate for the mode described by (κκκ, ν) and its time

derivative can be written as

q(κκκν ; t) =qSS(
κκκ
ν ; t) + qT(κκκν ; t) (A.7)
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and

q̇(κκκν ; t) =q̇SS(
κκκ
ν ; t) + q̇T(κκκν ; t) . (A.8)

The steady-state (SS) and transient (T ) parts and their time derivatives are given by

qSS(
κκκ
ν ; t) =C1(

κκκ
ν) exp[iω0(

κκκ
ν) t]

+ C2(
κκκ
ν) exp[−iω0(

κκκ
ν) t],

(A.9)

qT(κκκν ; t) = exp[−Γ(κκκν) |t|]{C3(
κκκ
ν) exp[iω0(

κκκ
ν) t]

− C4(
κκκ
ν) exp[−iω0(

κκκ
ν) t]},

(A.10)

q̇SS(
κκκ
ν ; t) =iω0 {C1(

κκκ
ν) exp[iω0(

κκκ
ν) t]− C2(

κκκ
ν) exp[−iω0(

κκκ
ν) t]} , (A.11)

and

q̇T(κκκν ; t) = exp[−Γ(κκκν) |t|]{C3(
κκκ
ν) [iω0(

κκκ
ν)− Γ(κκκν)] exp[iω0(

κκκ
ν) t]

−C4(
κκκ
ν) [iω0(

κκκ
ν) + Γ(κκκν)] exp[−iω0(

κκκ
ν) t]} ,

(A.12)

where the Cs are constants and ω0(
κκκ
ν) and Γ(κκκν) are the phonon mode frequency and linewidth.

The transient part describes the creation of an excess in the population of a phonon mode for

t < 0 and its decay back to equilibrium for t > 0.

Phonon population fluctuations are commonly modeled using the excitation and decay of

a single phonon mode (i.e., the single mode relaxation time approximation). In a real system,

there will be multiple phonons in each mode that simultaneously grow or decay with time. Thus,
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dealing only with q̇, we let

q̇(κκκν ; t) =
∑
j

i exp[−Γ(κκκν) |t− tj|]×

{Aj(κκκν) [ω0(
κκκ
ν) + iΓ(κκκν)] exp[iω0(

κκκ
ν) (t− tj)]

−Bj(
κκκ
ν) [ω0(

κκκ
ν)− iΓ(κκκν)] exp[−iω0(

κκκ
ν) (t− tj)]},

(A.13)

where many phonons in each mode, indexed by j, are simultaneously being created and de-

stroyed. The phonons grow for t < tj , decay for t > tj , and Aj and Bj are constants. We are not

concerned with the values of tj , Aj , and Bj , though they should satisfy the long-time average

〈q̇∗(κκκν ; t) q̇(κκκν ; t)〉 = 〈q̇∗SS(κκκν ; t) q̇SS(κκκν ; t)〉.

The expectation value of the kinetic energy of the normal mode in the time domain is

〈T(κκκν)〉 =
1

2
lim
τ0→∞

1

τ0

∫ τ0

0

q̇∗(κκκν ; t) q̇(
κκκ
ν ; t) dt. (A.14)

The expectation value of the kinetic energy of the normal mode can be transformed from the time

domain to the frequency domain by Parseval’s theorem,[133] giving

T(κκκν ;ω) = lim
τ0→∞

1

2τ0

∣∣∣∣ 1√
2π

∫ τ0

0

q̇(κκκν ; t) exp(−iωt)dt
∣∣∣∣2 . (A.15)

By substituting Eq. (A.13) into Eq. (A.15) and performing the time integration we find

T(κκκν ;ω) =
1

16πτ0

∣∣∣∣∣∑
j

exp[−iωtj]
{
Aj(

κκκ
ν)

ω0(
κκκ
ν) + iΓ(κκκν)

ω0(
κκκ
ν)− ω + iΓ(κκκν)

+Bj(
κκκ
ν)

ω0(
κκκ
ν)− iΓ(κκκν)

ω0(
κκκ
ν) + ω − iΓ(κκκν)

}∣∣∣∣2 .
(A.16)

We are primarily interested in values of ω where ω ≈ ω0 when Γ << ω0. When ω ≈ ω0, the

term involving Aj becomes large and the term involving Bj can be neglected (alternatively, we
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could ignore the term involving Aj when ω ≈ −ω0). Hence, we find

T(κκκν ;ω) =
1

16πτ0

∑
j

∑
j′

cos [ω(tj′ − tj)]Aj(κκκν)Aj′(κκκν)

×ω
2
0(
κκκ
ν) + Γ2(κκκν)

Γ(κκκν)

Γ(κκκν)

[ω0(
κκκ
ν)− ω]2 + Γ2(κκκν)

.

(A.17)

We arrive at the expression for the phonon spectral energy density for the wavevector κκκ by sum-

ming Eq. (A.17) over the different polarizations ν,

Φ(κκκ, ω) = 2
3n∑
ν

T(κκκν ;ω) =
3n∑
ν

C0(
κκκ
ν)

Γ(κκκν) /π

[ω0(
κκκ
ν)− ω]2 + Γ2(κκκν)

, (A.18)

where the factor of two comes from equipartition of kinetic and potential energy (valid for a

harmonic classical system, see Section 2.3.3), and

C0(
κκκ
ν) =

∑
j

∑
j′

cos [ω(tj′ − tj)]Aj(κκκν)Aj′(κκκν)
ω2

0(
κκκ
ν) + Γ2(κκκν)

8τ0Γ(κκκν)
. (A.19)

Thus, the phonon spectral energy density Φ(κκκ, ω) is a superposition of 3n Lorentzian functions

with centers at ω0(
κκκ
ν) (one for each polarization) with a linewidth (half-width at half-maximum)

of Γ(κκκν). Φ is a spectral energy density since its integral over all wavevectors and frequencies is

the total crystal energy, i.e., the Hamiltonian is

H =

∫
VBZ

∫ ∞
0

Φ(κκκ, ω)dωdκκκ, (A.20)

where VBZ is the volume of the first Brillouin zone. Like the frequency broadening, there is also

a broadening of the SED in wavevector. [111] For a finite sampling of the first Brillouin zone,

the Hamiltonian can be approximated by

H ≈ 2

N,3n∑
κκκ,ν

〈T(κκκν ; t)〉 =
N∑
κκκ

∫ ∞
0

Φ(ω,κκκ)dω. (A.21)
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A.2 Interpretation of Φ′

As demonstrated in Section 2.4.1, Φ′ is not the phonon spectral energy density, Φ, defined by Eq.

(2.3). Our findings and those of others, [36, 107, 112, 125, 128] however, suggest that Φ′ does

contain accurate information about the phonon frequencies. To understand this expression, we

start with the real-space atomic velocities as represented by the normal mode velocities, q̇
(
κκκ
′

ν
; t
)

[19],

u̇α(lb; t) =

N,3n∑
κκκ′ ,ν

1√
mbN

exp
[
iκκκ
′ · r0( l0)

]
e∗
(
κκκ
′
b

ν α

)
q̇
(
κκκ
′

ν
; t
)
. (A.22)

Fourier transforming both sides of Equation (A.22) in time and space, taking the complex mod-

ulus, and summing over the atoms in the unit cell and the Cartesian directions yields

lim
τ0→∞

1

4πτ0

3∑
α

n∑
b

mb

N

∣∣∣∣∣
N∑
l

∫ τ0

0

u̇α(lb; t) exp[Θ]dt

∣∣∣∣∣
2

=

lim
τ0→∞

1

4πτ0

3∑
α

n∑
b

∣∣∣∣∣m3/2
b√
N

N∑
l

3n∑
ν

e∗(κκκ b
ν α)

∫ τ0

0

q̇(κκκν ; t) exp[Θ]dt

∣∣∣∣∣
2

,

(A.23)

where the the sum over κκκ′ on the right-hand-side is reduced to a single wavevector by the or-

thogonality of the allowed wavevectors over the periodic domain. Equation (2.8) is the finite

integration of the left-hand-side of Eq. (A.23).

Under the harmonic approximation, the phonons are non-interacting and have no transient

response beyond a harmonic oscillation [see Appendix A.1, Eqs. (A.8) and (A.12)],

q̇(κκκν ; t) =q̇SS(
κκκ
ν ; t)

=iω0(
κκκ
ν) {C1(

κκκ
ν) exp[iω0(

κκκ
ν) t]− C2(

κκκ
ν) exp[−iω0(

κκκ
ν) t]} .

(A.24)
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Inserting Eq. (A.24) into the right hand side of Eq. (A.23) gives

3∑
α

n∑
b

mb

∣∣∣∣∣
N∑
l

∫ ∞
−∞

u̇α(lb; t) exp[iκκκ · r0( l0)− iωt]dt
∣∣∣∣∣
2

=

3∑
α

n∑
b

∣∣∣∣∣m3/2
b√
N

N∑
l

3n∑
ν

D(κκκ b
ν α) exp[iκκκ · r0( l0)]δ[ω0(

κκκ
ν)− ω]

∣∣∣∣∣
2

,

(A.25)

where D(κκκ b
ν α) = i

√
2πω0(

κκκ
ν)C1(

κκκ
ν) e
∗(κκκ b
ν α), δ is the Dirac function, and values of ω ≤ 0 are

ignored. Thus, at zero temperature Eq. (2.8) is a superposition of Dirac functions at the phonon

frequencies ω0(
κκκ
ν).

Equation (2.8) is similar to the definition of the displacement structure factor [152, 153, 173,

177, 194]

SD(κκκ, ω) =
1

4πτ0

∣∣∣∣∣
3∑
α

n∑
b

mb

N

N∑
l

∫ τ0

0

u̇α(lb; t) exp[Θ]dt

∣∣∣∣∣
2

, (A.26)

which is related to the static structure factor [48, 52, 73, 75, 152, 169, 175, 178, 180, 193, 195,

196, 197] (see Sections 3.3.2 and 4.4.2). [152]. The difference between Eqs. (2.8) and (A.26)

is that the summations over α and b occur inside the square modulus for Eq. (A.26). With

the summations inside the square modulus, the orthonormality of the mode eigenvectors can be

used to show that the static and dynamic structure factors are equivalent under the harmonic

approximation. [152]

A.3 NMD using Non-Exact Normal Modes

In Chapter 2, it was shown how NMD is applied to a perfect crystal. In reality, any crystal will

have some deviation from perfect periodicity, which may be caused by a point defect, a disloca-

tion, a grain boundary, or a free surface. In extreme cases, these deviations from periodicity will

lead to the emergence of modified normal modes. For small perturbations, however, it is reason-
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able to assume that the frequencies and mode shapes of the normal modes will be unchanged and

that the effect of the perturbation will be on the lifetimes. Under this assumption, one can still

project the atomic positions and velocities onto the normal modes of the unperturbed system.

While one could perform the NMD by projecting the atomic positions and velocities onto the

modes of the unperturbed system, it is more appropriate to use the virtual crystal approximation

(Section 3.3.3.1). Under the virtual crystal approximation, the system is replaced by one where

all atoms have the same mass, equal to the average of the atomic masses in the system of interest.

This system will have the same mode shapes as the original system, but the frequencies are

modified due to the change in the average atomic mass.

Results for the time- and frequency domain approaches to NMD are shown for two modes

for crystalline and alloyed LJ argon in Figs. A.2(a)-(d). These two modes are equivalent to those

shown in the perfect crystal in Figs. A.1(b), 2.1(a), and 2.1(b). For a concentration, c, of 0.05,

both peaks in the frequency domain are well-formed and a lifetime can be extracted by fitting the

data to a Lorentzian function. This behavior is typical of all modes at a concentration of 0.05.

The downward frequency shift is related to the increased average atomic mass.

For an alloy concentration of 0.5, the lower frequency mode still has a well-formed peak.

The higher-frequency mode does not, however, such that a lifetime cannot be extracted by fitting

to a Lorentzian function. Such behavior is typical of the higher frequency modes at high alloy

concentrations. This change in behavior is also seen in the time domain, where the decay of

the autocorrelation of the total mode energy is no longer a smooth exponential function. This

behavior indicates that the virtual crystal normal mode is not a good description of the true

normal mode. Equation (2.7) can be used to approximate a lifetime, as shown in Figs. A.2(c)

and A.2(d).

These artifacts observed using NMD method with the virtual crystal approximation are not

surprising given two considerations: (i) the MD simulations contain explicit disorder that influ-

ences the atomic trajectories, and (ii) the VC-normal modes are not the exact normal modes of

the explicitly-disordered lattice supercells. An effective lifetime can be predicted using Eq. (2.7)
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because the VC total mode energy autocorrelations still decay to zero in a finite time. This result

is to be expected given that the atomic trajectories contain information about the lattice energy,

which from general statistical physics principles will have exponential relaxation behavior in an

equilibrium ensemble. [18, 232, 233] The lifetimes predicted from the VC-NMD method are in

reasonable agreement with those predicted from the Gamma-NMD method, which uses the exact

normal modes of the disordered supercell (Section 3.3.3.1).
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Figure A.1: Dispersion curves and full Brillouin zone density of states for a LJ crystal at a
temperature of 10 K. (a) [100] and [111] dispersion curves and density of states based on the
primitive (i.e., one atom) unit cell. (b) [100] and [111] dispersion curves and density of states
based on the conventional (i.e., four atom) unit cell. The harmonic lattice dynamics calculations
are performed using a resolution of sixteen wave vectors along the reciprocal lattice vectors of
the conventional unit cell. The red and blue dots in (b) are the modes considered in Fig. 2.1.
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Figure A.2: Virtual crystal (a) frequency-domain and (b) time-domain NMD analysis for two
modes in LJ alloys with concentrations of 0.05 and 0.5. For modes that are not well-approximated
by the virtual crystal modes, the lifetime can be approximated using Eq. (2.7), as shown in (d).
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A.4 Effect of Metastability for Amorphous Solids on Normal

Mode Decomposition

Amorphous materials may have many different atomic configurations with nearly equivalent

potential energies, leading to potential metastability during MD simulations [52, 62, 187, 188,

189]. This meta-stability can cause errors when predicting vibrational lifetimes using NMD,

which is demonstrated below.

This case study is performed on an amorphous LJ system with 2048 atoms at a temperature

of 5 K. The amorphous solid is generated by liquefying the crystal, instantaneously removing

all kinetic energy, and then relaxing the structure (i.e., a melt-quench, Sections 4.3 and 4.3.1).

The MD simulation parameters are the same as for the LJ crystal and alloy (Section 4.3). The LJ

amorphous phase is metastable at this temperature and intermittently moves between very similar

low-energy states. Evidence for the metastability can be found by analyzing the time-histories of

the atomic displacements. As such, NMD, which requires the average atomic positions, will be

an approximation.

The time- and frequency-domain approaches to NMD are shown for two mode in the amor-

phous system in Figs. A.3(a) and A.3(b). Because the analysis is performed at the Gamma-point,

the peaks are well formed, but they are not Lorentzian. The oscillations in the total energy corre-

lation for the low frequency mode is a consequence of the metastability of the amorphous phase.

As such, the lifetimes are extracted by using Eq. (2.7), as shown in the inset to Fig. A.3(b). The

lifetimes for the amorphous system are plotted in Fig. A.4. Compared to the crystal, the life-

times show little frequency dependence and a significant number at low frequencies fall below

the IR limit [Eq. (3.12)]. This result seems to be a consequence of the metastability, since this

behavior is not observed for the NMD-predicted lifetimes for a-SiO2 and a-Si (Fig. 4.4, Section

4.4.4), which were both annealed carefully to remove metastability (Section 4.3.1). Annealing

the amorphous LJ system at the temperature studied does not remove metastability and leads to
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Figure A.3: (a) Time-domain and (b) frequency domain NMD analysis for two modes in an
amorphous LJ solid at a temperature of 10 K.
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Figure A.4: Lifetimes predicted by normal mode decomposition for an amorphous LJ phase
at a temperature of 5 K. The lifetimes for the crystal at a temperature of 10 K are provided for
comparison.
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A.5 Finite Simulation-Size Scaling for Thermal Conductivity

The thermal conductivities predicted by the NMD (Φ), Φ′, VC-NMD, VC-ALD, and GK methods

are system size-dependent [i.e., k = k(N0)] for all lattices and amorphous materials methods

except perfect LJ argon from GK[81] and a-SiO2 (Section 4.5.1). To predict a bulk thermal

conductivity, kbulk, a linear extrapolation procedure is used, whereby

k(N0)

kbulk
= 1− c0

N0

, (A.27)

where c0 is a constant [12, 29, 36, 85]. This procedure is necessary because the first Brillouin

zone is only sampled at a finite number of points for a finite simulation size, with no contribution

from the volume at its center. To predict a bulk thermal conductivity, it is important to sam-

ple points near the Brillouin zone center, where the modes can have large lifetimes and group

velocities [12, 123].

The thermal conductivity is predicted for varying system sizes and the bulk thermal con-

ductivity is obtained by fitting Eq. (A.27) to the data. For the NMD (Φ), Φ′, VC-NMD, and

VC-ALD methods, the validity of Eq. (A.27) requires that the low-frequency modes be domi-

nated by phonon-phonon scattering (i.e., τ ∝ ω−2) and follow the Debye approximation with

respect to the group velocity and DOS [29, 36]. For the LJ argon alloys, this requirement is

satisfied for modest system sizes (for N0 = 6 to 12).
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